A256512
n*(1+(2*n)^n).
Original entry on oeis.org
0, 3, 34, 651, 16388, 500005, 17915910, 737894535, 34359738376, 1785233613321, 102400000000010, 6427501315524619, 438244169232678924, 32254987351648575501, 2548827677619195478030, 215233605000000000000015, 19342813113834066795298832
Offset: 0
-
a256512 n = n * (1 + (2 * n) ^ n)
-
Join[{0},Table[n(1+(2n)^n),{n,20}]] (* Harvey P. Dale, Aug 05 2021 *)
A308506
Expansion of e.g.f.: -1/(1-LambertW(-2*x)).
Original entry on oeis.org
-1, 2, 0, 24, 256, 5280, 129024, 3893120, 138215424, 5657154048, 262183321600, 13572739749888, 776265384591360, 48609716407476224, 3307818108252585984, 243052603284860928000, 19179014510218162733056, 1617564760662882792898560, 145212699111541646687207424
Offset: 0
-
de:= diff(y(x),x) = x*y(x)^3/(1-2*x*y(x)):
S:= rhs(dsolve({de, y(0)=2},y(x), series, order=40)):
-1, seq(coeff(S,x,i)*(i+1)!,i=0..39); # Robert Israel, Apr 13 2020
-
CoefficientList[Series[-1/(1-LambertW[-2*x]), {x, 0, 20}], x] * Range[0, 20]!
-
my(x='x+O('x^20)); Vec(serlaplace(-1/(1-lambertw(-2*x)))) \\ Michel Marcus, Apr 13 2020
A342545
a(n)^2 is the least square that has exactly n 0's in base n.
Original entry on oeis.org
2, 24, 16, 280, 216, 3430, 4096, 19683, 100000, 4348377, 2985984, 154457888, 105413504, 4442343750, 4294967296, 313909084845, 198359290368, 8712567840033, 10240000000000, 500396429346030, 584318301411328, 38112390316557080, 36520347436056576, 298023223876953125
Offset: 2
n a(n) a(n)^2 in base n
2 2 4 100
3 24 576 210100
4 16 256 10000
5 280 78400 10002100
6 216 46656 1000000
7 3430 11764900 202000000
8 4096 16777216 100000000
9 19683 387420489 1000000000
10 100000 10000000000 10000000000
11 4348377 18908382534129 6030000000000
12 2985984 8916100448256 1000000000000
-
for(b=2,12,for(k=1,oo,my(s=k^2,v=digits(s,b));if(sum(k=1,#v,v[k]==0)==b,print1(k,", ");break)))
-
from numba import njit
@njit # works with 64 bits through a(14)
def digits0(n, b):
count0 = 0
while n >= b:
n, r = divmod(n, b)
count0 += (r==0)
return count0 + (n==0)
from sympy import integer_nthroot
def a(n):
an = integer_nthroot(n**n, 2)[0]
while digits0(an*an, n) != n: an += 1
return an
print([a(n) for n in range(2, 13)]) # Michael S. Branicky, Apr 07 2021
-
from itertools import product
from functools import reduce
from sympy.utilities.iterables import multiset_permutations
from sympy import integer_nthroot
def A342545(n):
for a in range(1,n):
p, q = integer_nthroot(a*n**n,2)
if q: return p
l = 1
while True:
cmax = n**(l+n+1)
for a in range(1,n):
c = cmax
for b in product(range(1,n),repeat=l):
for d in multiset_permutations((0,)*n+b):
p, q = integer_nthroot(reduce(lambda c, y: c*n+y, [a]+d),2)
if q: c = min(c,p)
if c < cmax:
return c
l += 1 # Chai Wah Wu, Apr 07 2021
A361291
a(n) = ((2*n + 1)^n - 1)/(2*n).
Original entry on oeis.org
1, 6, 57, 820, 16105, 402234, 12204241, 435984840, 17927094321, 833994048910, 43309534450633, 2483526865641276, 155867505885345241, 10627079738421409410, 782175399728156197665, 61812037545704964935440, 5220088150634922700769761, 469168161404536131943150998
Offset: 1
-
Table[((2n+1)^n-1)/(2n),{n,20}]
-
def A361291(n): return (((n<<1)+1)**n-1)//(n<<1) # Chai Wah Wu, Mar 14 2023
A362859
Expansion of e.g.f. exp(-x) / (1 + LambertW(-2*x)).
Original entry on oeis.org
1, 1, 13, 173, 3321, 81529, 2443333, 86475493, 3529941873, 163260749681, 8437633695741, 481912844592541, 30142773978386281, 2049173019206244073, 150443505029536707381, 11862692305729094644949, 999864950902004743707873, 89709634016056661732903137
Offset: 0
A180041
Number of Goldbach partitions of (2n)^n.
Original entry on oeis.org
0, 2, 13, 53, 810, 20564, 274904, 6341424, 419586990
Offset: 1
a(1) = 0 because 2*1 = 2 is too small to be the sum of two primes.
a(2) = 2 because 4^2 = 16 = 3+13 = 5+11.
a(3) = 13 because 6^3 = 216 and A180007(3) = Number of Goldbach partitions of 6^3 = 13.
a(4) = 53 because 8^4 = 2^12 and A006307(12) = Number of ways writing 2^12 as unordered sums of 2 primes.
-
A180041 := proc(n) local a,m,p: if(n=1)then return 0:fi: a:=0: m:=(2*n)^n: p:=prevprime(ceil((m-1)/2)): while p > 2 do if isprime(m-p) then a:=a+1: fi: p := prevprime(p): od: return a: end: seq(A180041(n),n=1..5); # Nathaniel Johnston, May 08 2011
-
f[n_] := Block[{c = 0, p = 3, m = (2 n)^n}, lmt = Floor[m/2] + 1; While[p < lmt, If[ PrimeQ[m - p], c++ ]; p = NextPrime@p]; c]; Do[ Print[{n, f@n // Timing}], {n, 8}] (* Robert G. Wilson v, Aug 10 2010 *)
A229213
Square array of denominators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.
Original entry on oeis.org
1, 2, 4, 3, 16, 27, 4, 36, 216, 256, 5, 64, 729, 4096, 3125, 6, 100, 1728, 20736, 100000, 46656, 7, 144, 3375, 65536, 759375, 2985984, 823543, 8, 196, 5832, 160000, 3200000, 34012224, 105413504, 16777216, 9, 256
Offset: 1
Table of fractions begins:
2, 3/2, 4/3, 5/4, ...
9/4, 25/16, 49/36, 81/64, ...
64/27, 343/216, 1000/729, 2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of denominators begins:
1, 2, 3, 4, ...
4, 16, 36, 64, ...
27, 216, 729, 1728, ...
256, 4096, 20736, 65536, ...
...
Triangle of antidiagonals begins:
1;
2, 4;
3, 16, 27;
4, 36, 216, 256;
...
-
t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Denominator
A385899
Triangle read by rows: T(n, k, m) = binomial(n, k) * k^n * m^k * (-1)^(n - k) for m = 2.
Original entry on oeis.org
1, 0, 2, 0, -4, 16, 0, 6, -96, 216, 0, -8, 384, -2592, 4096, 0, 10, -1280, 19440, -81920, 100000, 0, -12, 3840, -116640, 983040, -3000000, 2985984, 0, 14, -10752, 612360, -9175040, 52500000, -125411328, 105413504, 0, -16, 28672, -2939328, 73400320, -700000000, 3009871872, -5903156224, 4294967296
Offset: 0
Triangle begins:
[0] 1;
[1] 0, 2;
[2] 0, -4, 16;
[3] 0, 6, -96, 216;
[4] 0, -8, 384, -2592, 4096;
[5] 0, 10, -1280, 19440, -81920, 100000;
[6] 0, -12, 3840, -116640, 983040, -3000000, 2985984;
[7] 0, 14, -10752, 612360, -9175040, 52500000, -125411328, 105413504;
-
T := (n, k) -> binomial(n, k) * k^n * 2^k * (-1)^(n - k):
seq(seq(T(n, k), k = 0..n), n = 0..7);
-
A385899[n_, k_] := If[k == 0, Boole[n == 0], Binomial[n, k]*k^n*2^k*(-1)^(n - k)];
Table[A385899[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Aug 03 2025 *)
A108860
Numbers k that divide the sum of the digits of (2k)^k.
Original entry on oeis.org
1, 3, 9, 12, 16, 18, 22, 27, 29, 33, 48, 54, 80, 127, 133, 149, 171, 335, 888, 1038, 1137, 1435, 1465, 1647, 13921, 14256, 22467, 22872, 23514, 23709, 39564, 108708, 108777, 109308, 230115, 837117
Offset: 1
888 is a term because the sum of the digits of (2*888)^888, 13320, is divisible by 888.
-
Do[If[Mod[Plus @@ IntegerDigits[(2*n)^n], n] == 0, Print[n]], {n, 1, 10000}]
-
A108860_list = [n for n in range(1,1000) if not sum(int(d) for d in str((2*n)**n)) % n] # Chai Wah Wu, Mar 15 2018
A360596
Expansion of e.g.f. 1/( (1 - x) * (1 + LambertW(-2*x)) ).
Original entry on oeis.org
1, 3, 22, 282, 5224, 126120, 3742704, 131612432, 5347866752, 246490091136, 12704900911360, 724072211436288, 45209213973292032, 3068872654856532992, 225023336997933996032, 17724257054969009940480, 1492513932494133333753856, 133800772458366199028023296
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/((1-x)*(1+lambertw(-2*x)))))
-
a(n) = n!*sum(k=0, n, (2*k)^k/k!);
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+(2*i)^i); v;
Comments