cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A256512 n*(1+(2*n)^n).

Original entry on oeis.org

0, 3, 34, 651, 16388, 500005, 17915910, 737894535, 34359738376, 1785233613321, 102400000000010, 6427501315524619, 438244169232678924, 32254987351648575501, 2548827677619195478030, 215233605000000000000015, 19342813113834066795298832
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 31 2015

Keywords

Comments

a(n) = A108396(2*n,n): central terms of the triangle A108396.

Crossrefs

Programs

  • Haskell
    a256512 n = n * (1 + (2 * n) ^ n)
  • Mathematica
    Join[{0},Table[n(1+(2n)^n),{n,20}]] (* Harvey P. Dale, Aug 05 2021 *)

A308506 Expansion of e.g.f.: -1/(1-LambertW(-2*x)).

Original entry on oeis.org

-1, 2, 0, 24, 256, 5280, 129024, 3893120, 138215424, 5657154048, 262183321600, 13572739749888, 776265384591360, 48609716407476224, 3307818108252585984, 243052603284860928000, 19179014510218162733056, 1617564760662882792898560, 145212699111541646687207424
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 02 2019

Keywords

Crossrefs

Programs

  • Maple
    de:= diff(y(x),x) = x*y(x)^3/(1-2*x*y(x)):
    S:= rhs(dsolve({de, y(0)=2},y(x), series, order=40)):
    -1, seq(coeff(S,x,i)*(i+1)!,i=0..39); # Robert Israel, Apr 13 2020
  • Mathematica
    CoefficientList[Series[-1/(1-LambertW[-2*x]), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    my(x='x+O('x^20)); Vec(serlaplace(-1/(1-lambertw(-2*x)))) \\ Michel Marcus, Apr 13 2020

Formula

a(n) ~ 2^(n-2) * n^(n-1).

A342545 a(n)^2 is the least square that has exactly n 0's in base n.

Original entry on oeis.org

2, 24, 16, 280, 216, 3430, 4096, 19683, 100000, 4348377, 2985984, 154457888, 105413504, 4442343750, 4294967296, 313909084845, 198359290368, 8712567840033, 10240000000000, 500396429346030, 584318301411328, 38112390316557080, 36520347436056576, 298023223876953125
Offset: 2

Views

Author

Hugo Pfoertner, Apr 07 2021

Keywords

Examples

			   n    a(n)         a(n)^2   in base n
   2       2              4   100
   3      24            576   210100
   4      16            256   10000
   5     280          78400   10002100
   6     216          46656   1000000
   7    3430       11764900   202000000
   8    4096       16777216   100000000
   9   19683      387420489   1000000000
  10  100000    10000000000   10000000000
  11 4348377 18908382534129   6030000000000
  12 2985984  8916100448256   1000000000000
		

Crossrefs

Programs

  • PARI
    for(b=2,12,for(k=1,oo,my(s=k^2,v=digits(s,b));if(sum(k=1,#v,v[k]==0)==b,print1(k,", ");break)))
    
  • Python
    from numba import njit
    @njit # works with 64 bits through a(14)
    def digits0(n, b):
      count0 = 0
      while n >= b:
        n, r = divmod(n, b)
        count0 += (r==0)
      return count0 + (n==0)
    from sympy import integer_nthroot
    def a(n):
      an = integer_nthroot(n**n, 2)[0]
      while digits0(an*an, n) != n: an += 1
      return an
    print([a(n) for n in range(2, 13)]) # Michael S. Branicky, Apr 07 2021
    
  • Python
    from itertools import product
    from functools import reduce
    from sympy.utilities.iterables import multiset_permutations
    from sympy import integer_nthroot
    def A342545(n):
        for a in range(1,n):
            p, q = integer_nthroot(a*n**n,2)
            if q: return p
        l = 1
        while True:
            cmax = n**(l+n+1)
            for a in range(1,n):
                c = cmax
                for b in product(range(1,n),repeat=l):
                    for d in multiset_permutations((0,)*n+b):
                        p, q = integer_nthroot(reduce(lambda c, y: c*n+y, [a]+d),2)
                        if q: c = min(c,p)
                if c < cmax:
                    return c
            l += 1 # Chai Wah Wu, Apr 07 2021

Formula

a(2*n) = A062971(n) = 2*A193678(n).

Extensions

More terms from Chai Wah Wu, Apr 07 2021

A361291 a(n) = ((2*n + 1)^n - 1)/(2*n).

Original entry on oeis.org

1, 6, 57, 820, 16105, 402234, 12204241, 435984840, 17927094321, 833994048910, 43309534450633, 2483526865641276, 155867505885345241, 10627079738421409410, 782175399728156197665, 61812037545704964935440, 5220088150634922700769761, 469168161404536131943150998
Offset: 1

Views

Author

Stefano Spezia, Mar 12 2023

Keywords

Comments

This sequence is of the form (k^n - 1)/(k - 1) with k = 2*n + 1. See crossrefs in A218722 for other sequences of the same form.

Crossrefs

Programs

  • Mathematica
    Table[((2n+1)^n-1)/(2n),{n,20}]
  • Python
    def A361291(n): return (((n<<1)+1)**n-1)//(n<<1) # Chai Wah Wu, Mar 14 2023

Formula

a(n) = Sum_{i=0..n-1} A005408(n)^i.
a(n) = n! * [x^n] exp(x)*(exp(2*n*x) - 1)/(2*n).
a(n) = n! * [x^n] exp((n+1)*x)*sinh(n*x)/n.
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e.
Limit_{n->oo} (a(n+1)/a(n) - a(n)/a(n-1)) = 2*e.

A362859 Expansion of e.g.f. exp(-x) / (1 + LambertW(-2*x)).

Original entry on oeis.org

1, 1, 13, 173, 3321, 81529, 2443333, 86475493, 3529941873, 163260749681, 8437633695741, 481912844592541, 30142773978386281, 2049173019206244073, 150443505029536707381, 11862692305729094644949, 999864950902004743707873, 89709634016056661732903137
Offset: 0

Views

Author

Seiichi Manyama, May 05 2023

Keywords

Crossrefs

Column k=2 of A362019.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-x)/(1 + lambertw(-2*x))))

Formula

G.f.: Sum_{k>=0} (2*k*x)^k / (1 + x)^(k+1).
a(n) = (-1)^n * Sum_{k=0..n} (-2*k)^k * binomial(n,k).

A180041 Number of Goldbach partitions of (2n)^n.

Original entry on oeis.org

0, 2, 13, 53, 810, 20564, 274904, 6341424, 419586990
Offset: 1

Views

Author

Jonathan Vos Post, Aug 07 2010

Keywords

Comments

This is the main diagonal of the array mentioned in A180007, only considering even rows (as odd numbers cannot be the sums of two odd primes), namely A(2n, n) = number of ways of writing (2n)^n as the sum of two odd primes, when the order does not matter.

Examples

			a(1) = 0 because 2*1 = 2 is too small to be the sum of two primes.
a(2) = 2 because 4^2 = 16 = 3+13 = 5+11.
a(3) = 13 because 6^3 = 216 and A180007(3) = Number of Goldbach partitions of 6^3 = 13.
a(4) = 53 because 8^4 = 2^12 and A006307(12) = Number of ways writing 2^12 as unordered sums of 2 primes.
		

Crossrefs

Programs

  • Maple
    A180041 := proc(n) local a,m,p: if(n=1)then return 0:fi: a:=0: m:=(2*n)^n: p:=prevprime(ceil((m-1)/2)): while p > 2 do if isprime(m-p) then a:=a+1: fi: p := prevprime(p): od: return a: end: seq(A180041(n),n=1..5); # Nathaniel Johnston, May 08 2011
  • Mathematica
    f[n_] := Block[{c = 0, p = 3, m = (2 n)^n}, lmt = Floor[m/2] + 1; While[p < lmt, If[ PrimeQ[m - p], c++ ]; p = NextPrime@p]; c]; Do[ Print[{n, f@n // Timing}], {n, 8}] (* Robert G. Wilson v, Aug 10 2010 *)

Formula

a(n) = A061358((2*n)^n) = A061358(A062971(n)).

Extensions

a(6)-a(8) from Robert G. Wilson v, Aug 10 2010
a(9) from Giovanni Resta, Apr 15 2019

A229213 Square array of denominators of t(n,k) = (1+1/(k*n))^n, read by descending antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 16, 27, 4, 36, 216, 256, 5, 64, 729, 4096, 3125, 6, 100, 1728, 20736, 100000, 46656, 7, 144, 3375, 65536, 759375, 2985984, 823543, 8, 196, 5832, 160000, 3200000, 34012224, 105413504, 16777216, 9, 256
Offset: 1

Views

Author

Jean-François Alcover, Sep 16 2013

Keywords

Comments

Limit(t(n,k), n -> infinity) = exp(1/k).
1st row = A000027
2nd row = A016742
3rd row = A016767
4th row = A016804
5th row = A016853
1st column = A000312
2nd column = A062971
3rd column = A091482
4th column = A091483

Examples

			Table of fractions begins:
   2,       3/2,        4/3,         5/4, ...
  9/4,     25/16,      49/36,       81/64, ...
64/27,   343/216,   1000/729,    2197/1728, ...
625/256, 6561/4096, 28561/20736, 83521/65536, ...
...
Table of denominators begins:
1,      2,     3,     4, ...
4,     16,    36,    64, ...
27,   216,   729,  1728, ...
256, 4096, 20736, 65536, ...
...
Triangle of antidiagonals begins:
1;
2, 4;
3, 16, 27;
4, 36, 216, 256;
...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := (1+1/(k*n))^n; Table[t[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten // Denominator

A385899 Triangle read by rows: T(n, k, m) = binomial(n, k) * k^n * m^k * (-1)^(n - k) for m = 2.

Original entry on oeis.org

1, 0, 2, 0, -4, 16, 0, 6, -96, 216, 0, -8, 384, -2592, 4096, 0, 10, -1280, 19440, -81920, 100000, 0, -12, 3840, -116640, 983040, -3000000, 2985984, 0, 14, -10752, 612360, -9175040, 52500000, -125411328, 105413504, 0, -16, 28672, -2939328, 73400320, -700000000, 3009871872, -5903156224, 4294967296
Offset: 0

Views

Author

Peter Luschny, Aug 02 2025

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 0,   2;
  [2] 0,  -4,     16;
  [3] 0,   6,    -96,      216;
  [4] 0,  -8,    384,    -2592,      4096;
  [5] 0,  10,  -1280,    19440,    -81920,    100000;
  [6] 0, -12,   3840,  -116640,    983040,  -3000000,    2985984;
  [7] 0,  14, -10752,   612360,  -9175040,  52500000, -125411328,  105413504;
		

Crossrefs

Cf. A000007 (m=0), A258773 (m=1), this sequence (m=2), A062971 (main diagonal), A375540 (row sums), A375541 (row sums of absolute terms).

Programs

  • Maple
    T := (n, k) -> binomial(n, k) * k^n * 2^k * (-1)^(n - k):
    seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    A385899[n_, k_] := If[k == 0, Boole[n == 0], Binomial[n, k]*k^n*2^k*(-1)^(n - k)];
    Table[A385899[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Aug 03 2025 *)

A108860 Numbers k that divide the sum of the digits of (2k)^k.

Original entry on oeis.org

1, 3, 9, 12, 16, 18, 22, 27, 29, 33, 48, 54, 80, 127, 133, 149, 171, 335, 888, 1038, 1137, 1435, 1465, 1647, 13921, 14256, 22467, 22872, 23514, 23709, 39564, 108708, 108777, 109308, 230115, 837117
Offset: 1

Views

Author

Ryan Propper, Jul 11 2005

Keywords

Comments

The quotients are 2, 3, 7, 6, 7, 7, 7, 8, 8, 9, 9, 9, 5, 11, 11, 11, 11, 8, 15, 15, 15, 11, 11, 16, 20, 20, 21, 21, 21, 21, 22, 24, 24, 24, 21, 28.

Examples

			888 is a term because the sum of the digits of (2*888)^888, 13320, is divisible by 888.
		

Crossrefs

Cf. A062971.

Programs

  • Mathematica
    Do[If[Mod[Plus @@ IntegerDigits[(2*n)^n], n] == 0, Print[n]], {n, 1, 10000}]
  • Python
    A108860_list = [n for n in range(1,1000) if not sum(int(d) for d in str((2*n)**n)) % n] # Chai Wah Wu, Mar 15 2018

Extensions

a(25)-a(26) from Harvey P. Dale, Nov 24 2010
a(27)-a(35) from Lars Blomberg, Jul 02 2011
a(36) from Kevin P. Thompson, Apr 15 2022

A360596 Expansion of e.g.f. 1/( (1 - x) * (1 + LambertW(-2*x)) ).

Original entry on oeis.org

1, 3, 22, 282, 5224, 126120, 3742704, 131612432, 5347866752, 246490091136, 12704900911360, 724072211436288, 45209213973292032, 3068872654856532992, 225023336997933996032, 17724257054969009940480, 1492513932494133333753856, 133800772458366199028023296
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/((1-x)*(1+lambertw(-2*x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n, (2*k)^k/k!);
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i*v[i]+(2*i)^i); v;

Formula

a(n) = n! * Sum_{k=0..n} (2*k)^k / k!.
a(0)=1; a(n) = n*a(n-1) + (2*n)^n.
a(n) ~ 2^(n+1) * n^n / (2 - exp(-1)). - Vaclav Kotesovec, Feb 13 2023
Previous Showing 11-20 of 21 results. Next