cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A262301 Number of normal linear lambda terms of size n with no free variables.

Original entry on oeis.org

1, 3, 26, 367, 7142, 176766, 5304356, 186954535, 7566084686, 345664350778, 17592776858796, 986961816330662, 60502424162842876, 4023421969420255644, 288464963899330354104, 22180309834307193611287, 1820641848410408158704734, 158897008602951290424279330
Offset: 1

Views

Author

N. J. A. Sloane, Sep 30 2015

Keywords

Examples

			A(x) = x + 3*x^2 + 26*x^3 + 367*x^4 + 7142*x^5 + ...
		

Crossrefs

Column 0 of A318110.

Programs

  • Mathematica
    terms = 18; F[, ] = 0;
    Do[F[x_, t_] = Series[x t/(1-F[x, t]) + D[F[x, t], t], {x, 0, terms}, {t, 0, terms}] // Normal, {2 terms}];
    CoefficientList[F[x, 0], x][[2 ;; terms+1]] (* Jean-François Alcover, Sep 02 2018, after Gheorghe Coserea *)
  • PARI
    F(N) = {
      my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
      while(n++,
        F1 = x*t/(1-F0) + deriv(F0,t);
        if (F1 == F0, break()); F0 = F1;);
      F0;
    };
    seq(N) = Vec(subst(F(N+1), 't, 0));
    seq(18) \\ Gheorghe Coserea, Apr 01 2017

Formula

A(x) = F(x,0), where A(x) = Sum_{n>=1} a(n)*x^n and F(x,t) satisfies F = x*t/(1-F) + deriv(F,t), with F(0,t)=0, deriv(F,x)(0,t)=1+t. - Gheorghe Coserea, Apr 01 2017

Extensions

More terms from Gheorghe Coserea, Apr 01 2017

A281270 a(n) is the number of closed BCK (a.k.a. affine) lambda terms of size n.

Original entry on oeis.org

0, 0, 1, 2, 3, 9, 30, 81, 242, 838, 2799, 9365, 33616, 122937, 449698, 1696724, 6558855, 25559806, 101294687, 409363758, 1673735259, 6928460475, 29115833976, 123835124242, 532449210893, 2317382872404, 10199542298725, 45345006540851, 203704505953902, 924427259637953, 4234544300812834
Offset: 0

Views

Author

Gheorghe Coserea, Apr 02 2017

Keywords

Comments

It appears that for n >= 1, a(n + 5) == a(n) (mod 5), a(n + 38*7) == a(n) (mod 7), a(n + 30*11) == a(n) (mod 11) and a(n + 288*17) == a(n) (mod 17). - Peter Bala, Apr 11 2022

Examples

			A(x) = x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 81*x^7 + 242*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n] = 1 + a[n - 1] + 2 Sum[ k a[k], {k, 2, n - 3}] + Sum[a[k] a[n - 1 - k], {k, 2, n - 3}]; Table[a@ n, {n, 0, 30}] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    seq(N) = {
      my(a = vector(N));
      for (n=2, N, my(s1 = sum(k=2, n-3, k*a[k]));
        a[n] = 1 + a[n-1] + 2*s1 + sum(k=2, n-3, a[k]*a[n-1-k]));
      concat(0,a);
    };
    seq(30)
    \\ test: y = Ser(seq(201)); 0 == 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2

Formula

a(n) = 1 + a(n-1) + 2*Sum_{k=2..n-3} k*a(k) + Sum_{k=2..n-3} a(k)*a(n-1-k) for n>=2.
0 = 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2, where y(x) is the g.f.
a(3*n+1) = Sum_{k=0..n-1} binomial(3*n,3*k+1)*A062980(k).

Extensions

Name clarified by Pierre Lescanne, May 19 2017

A129114 Number of unrooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges).

Original entry on oeis.org

1, 3, 11, 81, 1228, 28174, 843186, 30551755, 1291861997, 62352938720, 3381736322813, 203604398647922, 13475238697911184, 972429507963453210, 75993857157285258473, 6393779463050776636807, 576237114190853665462712, 55385308766655472416299110, 5655262782600929403228668176
Offset: 0

Views

Author

Samuel A. Vidal, Mar 30 2007

Keywords

Comments

Equivalently, the number of pairs of permutations (sigma,tau) up to simultaneous conjugacy on a set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point.

Crossrefs

Column 3 of A380626.
Connected version of A129115.
Unrooted version of A062980.
Cf. also A121350, A121352, A005133.

Formula

Inverse Euler transform of A129115. - Andrew Howroyd, Jan 29 2025

Extensions

a(0)=1 prepended and terms a(17) onwards from Andrew Howroyd, Jan 29 2025

A129115 Number of unrooted unlabeled not necessarily connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges).

Original entry on oeis.org

1, 3, 17, 124, 1618, 33564, 956263, 33736198, 1402665692, 66902717187, 3596481426812, 215049652739982, 14154852098315796, 1016911004448831247, 79174846391508487198, 6640511488761139957873, 596865894849670793348763, 57234563024075319273338452, 5832189914390355126473955563
Offset: 0

Views

Author

Samuel A. Vidal, Mar 30 2007

Keywords

Comments

Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a set of size 6*n with sigma^3=tau^2=1 with no fixed point.

Crossrefs

Not necessarily connected version of A129114.
Unrooted, not necessarily connected version of A062980.
Cf. also A121350, A121352, A005133.

Programs

  • PARI
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    seq(n)={my(t=6*n); Vec(prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(3,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%6==0, r!*polcoef(p,r)/(k^r)*x^(k*r/6)), O(x*x^n)) ))} \\ Andrew Howroyd, Jan 29 2025

Formula

Euler transform of A129114. - Andrew Howroyd, Jan 29 2025

Extensions

a(17) onwards from Andrew Howroyd, Jan 28 2025

A292187 Number of rooted unlabeled bipartite cubic maps on a compact closed oriented surface with 2*n vertices (and thus 3*n edges), with a(0) = 1.

Original entry on oeis.org

1, 2, 12, 112, 1392, 21472, 394752, 8421632, 204525312, 5572091392, 168331164672, 5585571889152, 201973854584832, 7905697598963712, 333049899230625792, 15025907115679875072, 722841343143300759552, 36935846945562562527232, 1997902532753538016346112, 114050521905958855289864192, 6852141240070150728132329472
Offset: 0

Views

Author

Sasha Kolpakov, Sep 11 2017

Keywords

Comments

Equivalently, the number of rooted bicolored triangulations with 2*n triangles (and thus 3*n edges) for n > 0.
Equivalently, the number of pairs of permutations (alpha,sigma) up to simultaneous conjugacy on a pointed set of size 3*n with alpha^3=sigma^3=1, acting transitively and without fixed points, for n > 0.
This is also the S(3, -5, 1) sequence of Martin and Kearney, if the offset is set to 1.
This sequence is not D-finite (or holonomic).

Crossrefs

Programs

  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n == 0 else (3*n - 1)*a(n - 1) + sum([a(k)*a(n - k - 1) for k in range(1, n)])
    [a(n) for n in range(21)]

Formula

a(0)=1, a(1)=2, a(n) = 3*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1) for n>=2.
From Peter Bala, Sep 01 2023: (Start)
The o.g.f. A(x) = 1 + 2*x + 12*x^2 + 112*x^3 + 1392*x^4 + 21472*x^5 + 394752*x^6 + ... satisfies the Riccati differential equation (3*x^2)*A'(x) = -1 + (1 - x)*A(x) - x*A(x)^2 with A(0) = 1.
O.g.f. as a continued fraction of Stieltjes type: A(x) = 1/(1 - 2*x/(1 - 4*x/(1 - 5*x/(1 - 7*x/(1 - 8*x/(1 - 10*x/(1 - ... ))))))).
Also A(x) = 1/(1 + 2*x - 4*x/(1 - 2*x/(1 - 7*x/(1 - 5*x/(1 - 10*x/(1 - 8*x/(1 - ... ))))))). (End)

Extensions

Edited by Andrey Zabolotskiy, Jan 23 2025

A172455 The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.

Original entry on oeis.org

1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2010

Keywords

Examples

			G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
		

Crossrefs

Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).

Programs

  • Mathematica
    a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • PARI
    S(v1, v2, v3, N=16) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
    };
    S(6,-4,-1)
    \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
    \\ Gheorghe Coserea, May 12 2017

Formula

a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 24 2011
G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - Michael Somos, Jan 03 2013
a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [Vladimir Reshetnikov, Sep 24 2013]
a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - Vaclav Kotesovec, Jan 19 2015
6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - Gheorghe Coserea, May 12 2017
G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - Peter Bala, May 21 2017

A094199 a(0) = -1/2; for n > 0, a(n) = 2*(5*n-4)*(5*n-6)*a(n-1) + Sum_{k=1..n-1} a(k)*a(n-k).

Original entry on oeis.org

1, 49, 9800, 4412401, 3530881200, 4414129955298, 7945866428953600, 19467894010226044005, 62298157203907977632000, 252309651689367225339613486, 1261554846529199611110022246400, 7632433016288078444696820350362442, 54953647052313016042619300361129676800
Offset: 1

Views

Author

Steven Finch, May 25 2004

Keywords

Comments

The unknown constant in the article "Shapes of binary trees" by S. Finch (page 3, unsolved problem) is C = 0.0196207628432398766811334785902747944894235476341... = sqrt(15)/(20*Pi^2). - Vaclav Kotesovec, Jan 19 2015

Examples

			a(2) = 2*(10-4)*(10-6)*a(1)+a(1) = 49 since a(1)=1.
		

Crossrefs

Cf. A062980.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 2*(5*n - 4)*(5*n - 6)*a[n - 1] + Sum[a[k]*a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Jun 20 2013 *)

Formula

With a(0) = -1/2 one has for n > 0 the recurrence a(n) = 2*(5*n-4)*(5*n-6)*a(n-1)+sum(a(k)*a(n-k), k=1..n-1).
a(n) ~ sqrt(3) * 2^(n-1) * 5^(2*n-1/2) * n^(2*n-1) / (Pi * exp(2*n)). The unknown constant in theorem 4.2. in the article by S. Janson and P. Chassaing is beta = 5*sqrt(15)/(2*Pi^2) = 0.981038142161993834... . - Vaclav Kotesovec, Jan 19 2015

Extensions

Name corrected by Steven Finch, Aug 12 2024

A305873 Coefficients of polynomials g_b(x) that arise in the generating function for rooted maps (A053979).

Original entry on oeis.org

1, 3, 5, 15, 65, 60, 105, 804, 1730, 1105, 945, 10824, 39110, 55645, 27120, 10395, 162357, 854250, 1987270, 2105070, 828250, 135135, 2714445, 19180410, 63897550, 108878610, 91692550, 30220800, 2027025, 50301360, 452984532, 2004435096, 4836052370, 6479714440, 4523710100, 1282031525
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2018

Keywords

Comments

The generating function of the b-th subdiagonal of A053979 is g_b(y)*(1-sqrt(1-4x))/2/(1-4x)^b, b>=0, where g_b(y) = 1 (b= 0 or 1), 3+5*y (b=2), 15+65*y+60*y^2 (b=3) etc are the coefficients in this table, and where y=(1/sqrt(1-4x)-1)/2.
The coefficient 794 cited by Walsh-Lehman (1972) has been corrected to 804.

Crossrefs

Cf. A062980 (diagonal), A001147 (first column)

Programs

  • Maple
    A305873:= proc(b,x)
        local gn1,k ;
        option remember;
        if b = 0 or b= 1 then
            return 1 ;
        else
            gn1 := procname(b-1,x) ;
            add(procname(k,x)*procname(b-k,x),k=1..b-1) ;
            gbx := %*x+(2*(b-1)*(1+2*x)+1)*gn1 ;
            expand(gbx+2*x*(x+1)*diff(gn1,x)) ;
        end if;
    end proc:
    for b from 1 to 8 do
        gx := A305873(b,x) ;
        for l from 0 to b-1 do
            printf("%d,",coeff(gx,x,l)) ;
        end do:
        printf("\n") ;
    end do:
  • Mathematica
    A305873[b_, x_] := A305873[b, x] = Module[{gn1, k, s}, If[b == 0 || b == 1, Return@1, gn1 = A305873[b - 1, x]; s = Sum[A305873[k, x]*A305873[b - k, x], {k, 1, b - 1}]; gbx = s*x + (2*(b - 1)*(1 + 2*x) + 1)*gn1; Expand[gbx + 2*x*(x + 1)*D[gn1, x]]]];
    Reap[For[b = 1, b <= 8, b++, gx = A305873[b, x]; For[l = 0, l <= b - 1, l++, Sow[Coefficient[gx, x, l]]]]][[2, 1]] (* Jean-François Alcover, Nov 09 2023, after Maple program *)

A359181 Number of commutative BCK-algebras of order n up to isomorphism.

Original entry on oeis.org

1, 2, 5, 11, 28, 72, 192, 515, 1426
Offset: 2

Views

Author

Choiwah Chow, Dec 18 2022

Keywords

Comments

a(2)-a(10) were generated using the model enumerator Mace4.

Crossrefs

Previous Showing 11-19 of 19 results.