cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A241732 Primes p such that p^3 + 2 and p^3 - 2 are semiprime.

Original entry on oeis.org

2, 11, 13, 17, 41, 89, 101, 239, 271, 331, 571, 641, 719, 1051, 1231, 1321, 1549, 1559, 1721, 1741, 1831, 1993, 1999, 2029, 2311, 2459, 2749, 2837, 2861, 2939, 3389, 3467, 3671, 4049, 4111, 4273, 4787, 4919, 4969, 5657, 5689, 5861, 6221, 6679, 6691, 6829, 7109
Offset: 1

Views

Author

K. D. Bajpai, Apr 27 2014

Keywords

Examples

			11 is prime and appears in the sequence because 11^3 + 2 = 1333 = 31 * 43 and 11^3 - 2 = 1329 = 3 * 443, both are semiprime.
41 is prime and appears in the sequence because 41^3 + 2 = 68923 = 157 * 439 and 41^3 - 2 = 68919 = 3 * 22973, both are semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): KD:= proc() local k; k:=ithprime(n); if bigomega(k^3+2)=2 and bigomega(k^3-2)=2 then k; fi; end: seq(KD(), n=1..2000);
  • Mathematica
    A241732 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2 && PrimeOmega[t^3 - 2] == 2, AppendTo[A241732, t]], {n, 500}]; A241732
    Select[Prime[Range[1000]],PrimeOmega[#^3+2]==PrimeOmega[#^3-2]==2&] (* Harvey P. Dale, Jun 20 2019 *)

A242343 Triangular numbers T such that (T+2) is semiprime.

Original entry on oeis.org

36, 55, 91, 120, 153, 276, 300, 325, 435, 595, 903, 1035, 1225, 1653, 1711, 1891, 2016, 2145, 2485, 2556, 3003, 3240, 3741, 4095, 4465, 4560, 4851, 5253, 5460, 5565, 5995, 6105, 6216, 6441, 6555, 6903, 7021, 7140, 7260, 8001, 8256, 8911, 9045, 9180, 9591, 10585
Offset: 1

Views

Author

K. D. Bajpai, May 11 2014

Keywords

Comments

The n-th triangular number T(n) = n*(n+1)/2 = A000217(n).
Triangular numbers of the form p*q - 2, where p and q are primes.
The indices of these triangular numbers are 8, 10, 13, 15, 17, 23, 24, 25, 29, 34, 42, 45, 49, 57, 58, 61, 63, 65, 70, 71, 77, 80, 86, 90, 94, 95, 98, 102, 104, 105, 109, 110, 111, 113, 114, 117, 118, 119, 120, 126, 128, 133, 134, 135, 138, 145, ... - Wolfdieter Lang, May 13 2014

Examples

			a(1) = 36 = 8*(8+1)/2 = 36 + 2 = 38 = 2 * 19 is semiprime.
a(2) = 55 = 10*(10+1)/2 = 55 + 2 = 57 = 3 * 19 is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242343:= proc()local t; t:=x/2*(x+1); if bigomega(t+2)=2 then  RETURN (t); fi;end: seq(A242343 (),x=1..200);
  • Mathematica
    Select[Table[n/2*(n + 1), {n, 200}], PrimeOmega[# + 2] == 2 &]
    Select[Accumulate[Range[200]],PrimeOmega[#+2]==2&] (* Harvey P. Dale, Dec 25 2024 *)

A092105 Primes p such that both p-2 and p-4 are semiprimes.

Original entry on oeis.org

37, 53, 59, 89, 97, 163, 223, 239, 251, 269, 293, 307, 331, 397, 419, 449, 521, 547, 593, 673, 683, 691, 701, 757, 853, 953, 997, 1061, 1103, 1123, 1151, 1171, 1193, 1259, 1319, 1373, 1511, 1531, 1567, 1693, 1783, 1801, 1823, 1931, 1987, 2053, 2161, 2203
Offset: 1

Views

Author

Zak Seidov, Feb 20 2004

Keywords

Comments

Intersection of A063638 and A092104.

Examples

			97 is a member because 95=5*19 and 93=3*31
		

Crossrefs

Programs

  • PARI
    isok(n) = (n>5) && isprime(n) && (bigomega(n-2) ==  2) && (bigomega(n-4) == 2); \\ Michel Marcus, Oct 05 2013

Extensions

More terms from Ray Chandler, Feb 21 2004

A242344 Triangular numbers T such that T-2 is semiprime.

Original entry on oeis.org

6, 28, 36, 120, 136, 171, 276, 300, 325, 528, 561, 780, 820, 903, 1081, 1128, 1176, 1275, 1540, 1596, 1653, 2080, 2211, 2415, 2485, 2556, 2775, 3160, 3240, 3403, 3655, 3828, 4371, 4851, 5151, 5253, 5356, 5460, 5995, 6105, 6328, 6441, 6903, 7381, 7503, 8001, 8256
Offset: 1

Views

Author

K. D. Bajpai, May 11 2014

Keywords

Comments

The n-th triangular number T(n) = n*(n+1)/2.
Triangular numbers of the form p*q + 2, where p and q are primes (not necessarily distinct).

Examples

			a(2) = 28 = 7*(7+1)/2 = 28 - 2 = 26 = 2 * 13 is semiprime.
a(3) = 36 = 8*(8+1)/2 = 36 - 2 = 34 = 2 * 17 is semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242344:= proc()local t; t:=x*(x+1)/2;if bigomega(t-2)=2 then  RETURN (t); fi;end: seq(A242344(),x=1..200);
  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 200}], PrimeOmega[# - 2] == 2 &]
    Select[Accumulate[Range[200]],PrimeOmega[#-2]==2&] (* Harvey P. Dale, Feb 21 2023 *)

A242356 Triangular numbers T such that both (T+2) and (T-2) are semiprimes.

Original entry on oeis.org

36, 120, 276, 300, 325, 903, 1653, 2485, 2556, 3240, 4851, 5253, 5460, 5995, 6105, 6441, 6903, 8001, 8256, 8911, 9591, 10585, 12561, 12720, 14365, 20301, 21115, 22791, 23436, 24753, 26335, 26565, 26796, 27495, 29161, 30381, 31375, 34191, 34980, 37401, 40755
Offset: 1

Views

Author

K. D. Bajpai, May 11 2014

Keywords

Comments

The n-th triangular number T(n) = n*(n+1)/2.
Triangular numbers of the form p*q - 2 and r*s + 2 where p, q, r and s are primes.

Examples

			a(1) = 36 = 8*(8+1)/2 = 36 + 2 = 38 = 2 * 19 and  36 - 2 = 34 = 2 * 17 both are semiprimes.
a(2) = 120 = 15*(15+1)/2 = 120 + 2 = 122 = 2 * 61 and 120 - 2 = 118 = 2 * 59 both are semiprimes.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A242356:= proc()local t; t:=x*(x+1)/2; if bigomega(t+2)=2 and bigomega(t-2)=2 then  RETURN (t); fi;end: seq(A242356 (),x=1..500);
  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 500}], PrimeOmega[# + 2] == 2 && PrimeOmega[# - 2] == 2 &]
    Select[Accumulate[Range[300]],PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Apr 21 2016 *)

A267067 Primes p such that mu(p-2) = 1; that is, p-2 is squarefree and has an even number of prime factors, where mu is the Moebius function (A008683).

Original entry on oeis.org

3, 17, 23, 37, 41, 53, 59, 67, 71, 79, 89, 97, 113, 131, 157, 163, 179, 211, 223, 239, 251, 269, 293, 307, 311, 331, 337, 367, 373, 379, 383, 397, 409, 419, 439, 449, 487, 491, 499, 503, 521, 547, 593, 599, 613, 631, 673, 683, 691, 701, 709, 719, 733, 739
Offset: 1

Views

Author

Vincenzo Librandi, Jan 10 2016

Keywords

Comments

From Robert Israel, Jan 10 2016: (Start)
Includes all members of A063638 except 11.
The first terms not in A063638 are 3 and 1367. (End)

Crossrefs

Programs

  • Magma
    [n: n in [3..1000] | IsPrime(n) and MoebiusMu(n-2) eq 1];
    
  • Maple
    select(p -> isprime(p) and numtheory:-mobius(p-2)=1, [seq(i,i=3..1000,2)]); # Robert Israel, Jan 10 2016
  • Mathematica
    Select[Prime[Range[200]], MoebiusMu[# - 2] == 1 &]
  • PARI
    isok(p) = isprime(p) && (p>2) && (moebius(p-2)==1); \\ Michel Marcus, Mar 08 2023

A277993 Sophie Germain primes p such that p + 2 and p - 2 are semiprimes.

Original entry on oeis.org

23, 53, 89, 113, 131, 251, 293, 491, 683, 719, 953, 1439, 1499, 1511, 1733, 2393, 3491, 3779, 5171, 7043, 7151, 7433, 7649, 7901, 8069, 8663, 9689, 10781, 12011, 12653, 13049, 13229, 13451, 13553, 14669, 15569, 16001, 16253, 18899, 19709, 20411, 22469, 22751, 23099
Offset: 1

Views

Author

K. D. Bajpai, Nov 07 2016

Keywords

Comments

Intersection of A005384 and A063643.

Examples

			a(1) = 23 is Sophie Germain prime because 2*23 + 1 = 47 is prime. Also, 23 + 2 = 25 =  5*5; 23 - 2 = 21 = 7*3; are both semiprime.
a(2) = 53 is Sophie Germain prime because 2*53 + 1 = 107 is prime. Also, 53 + 2 = 55 =  11*5; 23 - 2 = 51 = 17*3; are both semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Prime[Range[10000]], PrimeQ[2 # + 1] &], PrimeOmega[# - 2] == 2 && PrimeOmega[# + 2] == 2 &]
    Select[Prime[Range[3000]],PrimeQ[2#+1]&&PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && bigomega(n+2)==2 && bigomega(n-2)==2 \\ Felix Fröhlich, Nov 07 2016

A285915 Integers n such that A112528(n) - A103274(n) = 1.

Original entry on oeis.org

5, 7, 9, 12, 13, 16, 17, 19, 20, 22, 24, 25, 30, 32, 37, 38, 41, 47, 48, 52, 54, 57, 62, 63, 64, 67, 68, 73, 74, 75, 76, 78, 80, 81, 85, 87, 93, 94, 95, 96, 98, 101, 108, 109, 112, 115, 122, 124, 125, 126, 127, 128, 130, 131, 133, 134, 136, 137, 138, 140, 147
Offset: 1

Views

Author

Zak Seidov, Apr 28 2017

Keywords

Comments

In general, A112528(n) - A103274(n) = 0 or 1.
Also, A000040(a(n)) = A063638(n).

Crossrefs

Programs

  • Mathematica
    Select[Range@ 150, And[# != 1, PrimeOmega[Prime@ # - 2] == 2] &] (* Michael De Vlieger, May 01 2017 *)
  • PARI
    is(n)=n!=1&&bigomega(prime(n)-2)==2 \\ David A. Corneth, Apr 29 2017
Previous Showing 11-18 of 18 results.