cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A016095 Triangular array T(n,k) read by rows, where T(n,k) = coefficient of x^n*y^k in 1/(1-x-y-(x+y)^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 5, 20, 30, 20, 5, 8, 40, 80, 80, 40, 8, 13, 78, 195, 260, 195, 78, 13, 21, 147, 441, 735, 735, 441, 147, 21, 34, 272, 952, 1904, 2380, 1904, 952, 272, 34, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005

Examples

			Triangle begins:
  1;
  1,  1;
  2,  4,  2;
  3,  9,  9,  3;
  5, 20, 30, 20,  5;
  8, 40, 80, 80, 40, 8;
  ...
		

Crossrefs

Columns include A000045, A023607. Central diagonal is A102307. Antidiagonal sums are in A063727.

Programs

  • Maple
    read transforms; 1/(1-x-y-(x+y)^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    T[n_, k_] := SeriesCoefficient[1/(1-x-y-(x+y)^2), {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2017 *)

Formula

G.f.: 1/(1-x-y-(x+y)^2).
T(n,k) = Fibonacci(n+1)*binomial(n,k) = A000045(n+1)*A007318(n,k). - Philippe Deléham, Oct 14 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A123392(n). - Philippe Deléham, Oct 14 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k+1+ x*(1+y))*x*(1+y)/((2*k+2+ x*(1+y))*x*(1+y)+ 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
T(n,k) = T(n-1,k)+T(n-1,k-1)+T(n-2,k)+2*T(n-2,k-1)+T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = T(2,2) = 2, T(2,1) = 4, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013

A006483 a(n) = Fibonacci(n)*2^n + 1.

Original entry on oeis.org

1, 3, 5, 17, 49, 161, 513, 1665, 5377, 17409, 56321, 182273, 589825, 1908737, 6176769, 19988481, 64684033, 209321985, 677380097, 2192048129, 7093616641, 22955425793, 74285318145, 240392339457, 777925951489, 2517421260801, 8146546327553, 26362777698305
Offset: 0

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A103435 + 1.

Programs

Formula

G.f.: -(-1+6*x^2)/((1-x)*(1-2*x-4*x^2)).

Extensions

G.f. in Formula field corrected by Vincenzo Librandi, Jun 09 2013

A234357 Array T(n,k) by antidiagonals: T(n,k) = n^k * Fibonacci(k).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 18, 24, 5, 5, 32, 81, 80, 8, 6, 50, 192, 405, 256, 13, 7, 72, 375, 1280, 1944, 832, 21, 8, 98, 648, 3125, 8192, 9477, 2688, 34, 9, 128, 1029, 6480, 25000, 53248, 45927, 8704, 55, 10, 162, 1536, 12005, 62208, 203125, 344064, 223074, 28160, 89, 11, 200, 2187
Offset: 0

Views

Author

Ralf Stephan, Dec 24 2013

Keywords

Examples

			Array starts:
1,  2,   3,    5,     8,     13,    21,   34, 55, 89,...    (A000045)
2,  8,  24,   80,   256,    832,  2688, 8704,...   (A063727, A085449)
3, 18,  81,  405,  1944,   9477, 45927,...         (A122069, A099012)
4, 32, 192, 1280,  8192,  53248,...                         (A099133)
5, 50, 375, 3125, 25000, 203125,...
6, 72, 648, 6480, 62208, 606528,...
...
Columns: A000027, A001105, A117642.
		

Programs

  • PARI
    T(n,k)=n^k*fibonacci(k)
    
  • PARI
    T(n,k)=polcoeff(Ser(1/(1-n*x-n^2*x^2)),k)

Formula

G.f. of n-th row: 1/(1 - n*x - n^2*x^2).
Recurrence: T(n,k) = n*T(n,k-1) + n^2*T(n,k-2), starting n, 2*n^2.

A269991 Decimal expansion of Sum_{n >= 1} 2^(1-n)/Fibonacci(n).

Original entry on oeis.org

1, 6, 8, 4, 8, 1, 3, 1, 4, 4, 4, 8, 9, 5, 7, 6, 0, 9, 6, 3, 1, 6, 5, 5, 4, 3, 3, 7, 3, 8, 0, 0, 7, 8, 2, 3, 0, 2, 3, 7, 0, 6, 3, 8, 8, 2, 4, 5, 7, 0, 8, 6, 8, 2, 0, 9, 4, 3, 1, 7, 6, 1, 8, 8, 5, 9, 5, 0, 5, 6, 0, 0, 2, 8, 0, 4, 9, 4, 5, 4, 9, 8, 9, 1, 0, 8
Offset: 1

Views

Author

Clark Kimberling, Mar 12 2016

Keywords

Examples

			1.684813144489576096316554337380078230...
		

Crossrefs

Programs

  • Mathematica
    x = N[Sum[2^(1 - n)/Fibonacci[n], {n, 1, 500}], 100]
    RealDigits[x][[1]]
  • PARI
    suminf(n=1, 2^(1-n)/fibonacci(n)) \\ Michel Marcus, Feb 01 2021

Formula

Equals Sum_{n>=0} 1/A063727(n) = Sum_{n>=1} 1/A085449(n) = 2 * Sum_{n>=1} 1/A103435(n) = 4 * Sum_{n>=1} 1/A209084(n). - Amiram Eldar, Feb 01 2021

A086344 a(n) = -2*a(n-1) + 4*a(n-2), a(0) = 1, a(1) = 0.

Original entry on oeis.org

1, 0, 4, -8, 32, -96, 320, -1024, 3328, -10752, 34816, -112640, 364544, -1179648, 3817472, -12353536, 39976960, -129368064, 418643968, -1354760192, 4384096256, -14187233280, 45910851584, -148570636288, 480784678912, -1555851902976, 5034842521600, -16293092655104
Offset: 0

Views

Author

Paul Barry, Jul 17 2003

Keywords

Comments

Inverse binomial transform of (1,1,5,5,25,25,.....).
The absolute values are the constant terms of the reduction by x^2->x+1 of the polynomial p(n,x) given for d=sqrt(x+1) by p(n,x)=((x+d)^n-(x-d)^n)/(2d), for n>=1. The coefficient of x under this reduction is given by A103435. See A192232 for a discussion of reduction. - Clark Kimberling, Jun 29 2011

Programs

  • Maple
    seq((-2)^n * combinat:-fibonacci(n-1), n = 0 .. 100); # Robert Israel, Oct 02 2014
  • Mathematica
    LinearRecurrence[{-2,4},{1,0},40] (* Harvey P. Dale, Oct 10 2018 *)

Formula

G.f.: (1+2*x)/((1+(1+sqrt(5))*x)(1+(1-sqrt(5))*x)) = ( -1-2*x ) / ( -1-2*x+4*x^2 ).
E.g.f.: exp(-x)*(cosh(sqrt(5)*x)+sinh(sqrt(5)*x)/sqrt(5)).
a(n)=(sqrt(5)-1)^n*(sqrt(5)/10+1/2)+(-sqrt(5)-1)^n*(1/2-sqrt(5)/10).
(-1)^n*a(n) = A063727(n) - 2*A063727(n-1). - R. J. Mathar, Jul 19 2012
(-1)^n*a(n) = sum(k=0..n, binomial(n,k)*(F(n+1)-F(n))), F(n) Fibonacci number A000045. - Peter Luschny, Oct 01 2014
a(n) = (-2)^n *A000045(n-1). - Robert Israel, Oct 02 2014

A087205 a(n) = -2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 0, 8, -16, 64, -192, 640, -2048, 6656, -21504, 69632, -225280, 729088, -2359296, 7634944, -24707072, 79953920, -258736128, 837287936, -2709520384, 8768192512, -28374466560, 91821703168, -297141272576, 961569357824, -3111703805952
Offset: 0

Views

Author

Paul Barry, Aug 25 2003

Keywords

Comments

Inverse binomial transform of A087204.

Crossrefs

Programs

  • Magma
    [(-1)^(n+1)*2^n*Fibonacci(n-2): n in [0..50]]; // G. C. Greubel, Oct 08 2018
  • Mathematica
    Table[-(-2)^n*Fibonacci[n - 2], {n, 0, 50}] (* G. C. Greubel, Oct 08 2018 *)
    LinearRecurrence[{-2,4},{1,2},30] (* Harvey P. Dale, Jan 24 2022 *)
  • PARI
    Vec((4*x+1)/(-4*x^2+2*x+1)+O(x^66)) \\ Joerg Arndt, Jul 14 2013
    
  • PARI
    vector(50, n, n--; (-1)^(n+1)*2^n*fibonacci(n-2)) \\ G. C. Greubel, Oct 08 2018
    

Formula

a(n) = (-1-sqrt(5))^n * (1/2-3*sqrt(5)/10) + (-1+sqrt(5))^n * (1/2+3*sqrt(5)/10).
G.f.: (4*x +1)/(-4*x^2 +2*x +1). - Joerg Arndt, Jul 14 2013
a(n+2) = A085449(n)*(-1)^(n+1); a(n+3) = A063727(n)*(-1)^n.
a(n) = -(-2)^n*F(n-2) for n >= 0, with F = A000045, and F(-1) = 1, F(-2) = -1. - Wolfdieter Lang, Oct 08 2018

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019

A163762 Triangle of coefficients of polynomials H(n,x)=(U^n+L^n)/2+(U^n-L^n)/(2d), where U=x+d, L=x-d, d=(x+4)^(1/2).

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 1, 6, 13, 4, 1, 10, 29, 24, 16, 1, 15, 55, 81, 88, 16, 1, 21, 95, 207, 300, 144, 64, 1, 28, 154, 448, 813, 684, 496, 64, 1, 36, 238, 868, 1913, 2352, 2272, 768, 256, 1, 45, 354, 1554, 4077, 6625, 7984, 4704, 2560, 256, 1, 55, 510, 2622, 8061, 16283
Offset: 1

Views

Author

Clark Kimberling, Aug 04 2009

Keywords

Comments

H(n,x)=P(n,x)+Q(n,x), where P and Q are given by A162516, A162517.
H(n,0)=4^Floor(n/2) for n=0,1,2,...
H(n,1)=A063727(n); row sums
(Column 2)=A000217 (triangular numbers)

Examples

			First six rows:
1
1...1
1...3...4
1...6..13...4
1..10..29..24..16
1..15..55..81..88..16
Row 6 represents x^5+15*x^4+55*x^3+81*x^2+88*x+16.
		

Crossrefs

Formula

H(n,x)=2*x*H(n-1,x)-(x^2-x-4)*H(n-2,x), where H(0,x)=1, H(1,x)=x+1.
H(n,x)=(1+1/d)*U^n+(1-1/d)*L^n, where U=x+d, L=x-d, d=(x+4)^(1/2).

A209084 a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4.

Original entry on oeis.org

0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104
Offset: 0

Views

Author

Seiichi Kirikami, Mar 06 2012

Keywords

Comments

a(n)/A063727(n) are convergents for A134972.
Abs(Sum_{i=0..n} C(n,n-i)*a(i)-(sqrt(5)-1)* A033887(n))->0. - Seiichi Kirikami, Jan 20 2016

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Cf. A086344 (this sequence with signs).

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016
  • Mathematica
    RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4}, a, {n, 30}]
    LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *)
  • PARI
    concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016
    

Formula

a(n) = (2/sqrt(5))*((1+sqrt(5))^n-(1-sqrt(5))^n).
G.f.: 4*x/(1-2*x-4*x^2). - Bruno Berselli, Mar 08 2012
a(n) = 4*A085449(n) = 2*A103435(n). - Bruno Berselli, Mar 08 2012
Sum_{n>=1} 1/a(n) = (1/4) * A269991. - Amiram Eldar, Feb 01 2021
Previous Showing 31-40 of 49 results. Next