cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 244 results. Next

A358901 Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 7, 9, 8, 9, 11, 11, 15, 16, 16, 18, 20, 22, 26, 28, 31, 32, 36, 40, 45, 46, 46, 50, 59, 64, 70, 75, 78, 83, 89, 94, 108, 106, 104, 120, 137, 142, 147, 150, 161, 174, 190, 200, 220, 226, 224, 248, 274, 274, 287, 301, 320, 340, 351, 361
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(11) = 7 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (41)  (42)  (43)   (62)   (54)   (82)   (74)
                              (51)  (61)   (71)   (63)   (91)   (65)
                                    (421)  (431)  (81)   (451)  (83)
                                                  (621)  (631)  (92)
                                                                (A1)
                                                                (821)
		

Crossrefs

The weakly decreasing version is A358909 (complement A358910).
The version not counting multiplicity is A358903, weakly decreasing A358902.
For equal numbers of prime factors we have A319169, compositions A358911.
A001222 counts prime factors, distinct A001221.
A063834 counts twice-partitions.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeOmega/@#&]],{n,0,60}]

Extensions

a(61) and beyond from Lucas A. Brown, Dec 14 2022

A358905 Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 49, 91, 179, 341, 664, 1280, 2503, 4872, 9557, 18750, 36927, 72800, 143880, 284660, 564093, 1118911, 2221834, 4415417, 8781591, 17476099, 34799199, 69327512, 138176461, 275503854, 549502119, 1096327380, 2187894634, 4367310138, 8719509111
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(0) = 1 through a(4) = 13 sequences:
  ()  ((1))  ((2))     ((3))        ((4))
             ((11))    ((21))       ((22))
             ((1)(1))  ((111))      ((31))
                       ((1)(2))     ((211))
                       ((2)(1))     ((1111))
                       ((1)(1)(1))  ((1)(3))
                                    ((2)(2))
                                    ((3)(1))
                                    ((11)(11))
                                    ((1)(1)(2))
                                    ((1)(2)(1))
                                    ((2)(1)(1))
                                    ((1)(1)(1)(1))
		

Crossrefs

The case of set partitions is A038041.
The version for weakly decreasing lengths is A141199, strictly A358836.
For equal sums instead of lengths we have A279787.
The case of twice-partitions is A306319, distinct A358830.
The unordered version is A319066.
The case of plane partitions is A323429.
The case of constant sums also is A358833.
A055887 counts sequences of partitions with total sum n.
A281145 counts same-trees.
A319169 counts partitions with constant Omega, ranked by A320324.
A358911 counts compositions with constant Omega, distinct A358912.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: 1 + Sum_{k>=1} (1/(1 - [y^k]P(x,y)) - 1) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A358906 Number of finite sequences of distinct integer partitions with total sum n.

Original entry on oeis.org

1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 13 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((1)(11))  ((1)(3))
                 ((11)(1))  ((3)(1))
                            ((11)(2))
                            ((1)(21))
                            ((2)(11))
                            ((21)(1))
                            ((1)(111))
                            ((111)(1))
		

Crossrefs

This is the case of A055887 with distinct partitions.
The unordered version is A261049.
The case of twice-partitions is A296122.
The case of distinct sums is A336342, constant sums A279787.
The version for sequences of compositions is A358907.
The case of weakly decreasing lengths is A358908.
The case of distinct lengths is A358912.
The version for strict partitions is A358913, distinct case of A304969.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
          binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..32);  # Alois P. Heinz, Feb 13 2024
  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]

Formula

a(n) = Sum_{k} A330463(n,k) * k!.

A300352 Number of strict trees of weight n with distinct leaves.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 8, 11, 17, 40, 48, 76, 109, 159, 400, 470, 745, 1057, 1576, 2103, 5267, 6022, 9746, 13390, 20099, 26542, 39396, 82074, 101387, 152291, 215676, 308937, 423587, 596511, 799022, 1623311, 1960223, 2947722, 4048704, 5845982, 7794809, 11028888
Offset: 1

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

A strict tree of weight n > 0 is either a single node of weight n, or a sequence of two or more strict trees with strictly decreasing weights summing to n.

Examples

			The a(8) = 11 strict trees with distinct leaves: 8, (71), ((52)1), ((43)1), (62), ((51)2), (53), ((41)3), (5(21)), (521), (431).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=
    Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    str[q_]:=str[q]=If[Length[q]===1,1,Total[Times@@@Map[str,Select[sps[q],And[Length[#]>1,UnsameQ@@Total/@#]&],{2}]]];
    Table[Total[str/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,20}]

Formula

a(n) = Sum_{i=1..A000009(n)} A294018(A246867(n,i)).

A300442 Number of binary strict trees of weight n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 23, 46, 108, 231, 561, 1285, 3139, 7348, 18265, 43907, 109887, 267582, 675866, 1669909, 4238462, 10555192, 26955062, 67706032, 173591181, 438555624, 1129088048, 2869732770, 7410059898, 18911818801, 48986728672, 125562853003, 326011708368
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

A binary strict tree of weight n > 0 is either a single node of weight n, or an ordered pair of binary strict trees with strictly decreasing weights summing to n.

Examples

			The a(5) = 6 binary strict trees: 5, (41), (32), ((31)1), ((21)2), (((21)1)1).
The a(6) = 10 binary strict trees:
  6,
  (51), (42),
  ((41)1), ((32)1), ((31)2),
  (((31)1)1), (((21)2)1), (((21)1)2),
  ((((21)1)1)1).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(j)*a(n-j), j=1..(n-1)/2)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    k[n_]:=k[n]=1+Sum[Times@@k/@y,{y,Select[IntegerPartitions[n],Length[#]===2&&UnsameQ@@#&]}];
    Array[k,40]
    (* Second program: *)
    a[n_] := a[n] = 1 + Sum[a[j]*a[n - j], {j, 1, (n - 1)/2}];
    a /@ Range[0, 40] (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=1, (n-1)\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 25 2018

Formula

a(n) = 1 + Sum_{x + y = n, 0 < x < y < n} a(x) * a(y).

A301368 Regular triangle where T(n,k) is the number of binary enriched p-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 5, 3, 1, 3, 7, 12, 12, 6, 1, 3, 9, 19, 28, 25, 11, 1, 4, 14, 36, 65, 81, 63, 24, 1, 4, 16, 48, 107, 172, 193, 136, 47, 1, 5, 22, 75, 192, 369, 522, 522, 331, 103, 1, 5, 25, 96, 284, 643, 1108, 1420, 1292, 750, 214, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A binary enriched p-tree of weight n is either a single node of weight n, or an ordered pair of binary enriched p-trees with weakly decreasing weights summing to n.

Examples

			Triangle begins:
  1
  1   1
  1   1   1
  1   2   3   2
  1   2   4   5   3
  1   3   7  12  12   6
  1   3   9  19  28  25  11
  1   4  14  36  65  81  63  24
  1   4  16  48 107 172 193 136  47
  1   5  22  75 192 369 522 522 331 103
  ...
The T(6,3) = 7 binary enriched p-trees: ((41)1), ((32)1), (4(11)), ((31)2), ((22)2), (3(21)), ((21)3).
		

Crossrefs

Programs

  • Mathematica
    bintrees[n_]:=Prepend[Join@@Table[Tuples[bintrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]===2&]}],n];
    Table[Length[Select[bintrees[n],Count[#,_Integer,{-1}]===k&]],{n,13},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + sum(k=1, n\2, v[k]*v[n-k])); apply(p->Vecrev(p/y), v)}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018

A302493 Prime numbers of prime-power index.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 31, 41, 53, 59, 67, 83, 97, 103, 109, 127, 131, 157, 179, 191, 211, 227, 241, 277, 283, 311, 331, 353, 367, 401, 419, 431, 461, 509, 547, 563, 587, 599, 617, 661, 691, 709, 719, 739, 773, 797, 859, 877, 919, 967, 991, 1009, 1031
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    Prime/@Select[Range[100],Or[#===1,PrimePowerQ[#]]&]
  • PARI
    forprime(p=1, 500, if(p==2 || isprimepower(primepi(p)), print1(p, ", "))) \\ Felix Fröhlich, Apr 10 2018

Formula

a(n) = A000040(A000961(n)).

A318434 Number of ways to split the integer partition with Heinz number n into consecutive subsequences with equal sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3072) = 5 constant-sum split partitions:
  (21111111111)
  (21111)(111111)
  (211)(1111)(1111)
  (21)(111)(111)(111)
  (2)(11)(11)(11)(11)(11)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Length[Select[comps[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],SameQ@@Total/@#&]],{n,100}]

A318948 Number of ways to choose an integer partition of each factor in a factorization of n.

Original entry on oeis.org

1, 2, 3, 9, 7, 17, 15, 40, 39, 56, 56, 126, 101, 165, 197, 336, 297, 496, 490, 774, 837, 1114, 1255, 1948, 2007, 2638, 3127, 4123, 4565, 6201, 6842, 9131, 10311, 12904, 14988, 19516, 21637, 26995, 31488, 39250, 44583, 55418, 63261, 77683, 89935, 108068, 124754
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Examples

			The a(4) = 9 ways: (1+1)*(1+1), (1+1+1+1), (1+1)*(2), (2)*(1+1), (2+1+1), (2)*(2), (2+2), (3+1), (4).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Sum[Times@@PartitionsP/@fac,{fac,facs[n]}],{n,10}]

Formula

Dirichlet g.f.: Product_{n > 1} 1 / (1 - P(n) / n^s) where P = A000041. [clarified by Ilya Gutkovskiy, Oct 26 2019]

A330462 Triangle read by rows where T(n,k) is the number of k-element sets of nonempty sets of positive integers with total sum n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 2, 0, 0, 0, 0, 5, 11, 3, 0, 0, 0, 0, 0, 6, 16, 8, 0, 0, 0, 0, 0, 0, 8, 25, 15, 1, 0, 0, 0, 0, 0, 0, 10, 35, 28, 4, 0, 0, 0, 0, 0, 0, 0, 12, 52, 46, 9, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  1  0
  0  2  1  0
  0  2  2  0  0
  0  3  4  0  0  0
  0  4  6  2  0  0  0
  0  5 11  3  0  0  0  0
  0  6 16  8  0  0  0  0  0
  0  8 25 15  1  0  0  0  0  0
  0 10 35 28  4  0  0  0  0  0  0
  ...
Row n = 7 counts the following set-systems:
  {{7}}      {{1},{6}}      {{1},{2},{4}}
  {{1,6}}    {{2},{5}}      {{1},{2},{1,3}}
  {{2,5}}    {{3},{4}}      {{1},{3},{1,2}}
  {{3,4}}    {{1},{1,5}}
  {{1,2,4}}  {{1},{2,4}}
             {{2},{1,4}}
             {{2},{2,3}}
             {{3},{1,3}}
             {{4},{1,2}}
             {{1},{1,2,3}}
             {{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,2],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
  • PARI
    L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
    A(n)={my(c=L(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))}
    {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019

Formula

G.f.: Product_{j>=1} (1 + y*x^j)^A000009(j). - Andrew Howroyd, Dec 29 2019
Previous Showing 101-110 of 244 results. Next