cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A248725 Decimal expansion of Sum_{k>=1} 1/(8^k - 1).

Original entry on oeis.org

1, 6, 0, 9, 6, 6, 1, 8, 4, 3, 1, 5, 0, 6, 2, 3, 9, 6, 8, 0, 5, 3, 0, 2, 5, 6, 4, 1, 4, 3, 6, 4, 2, 8, 8, 5, 5, 5, 0, 7, 4, 3, 8, 5, 6, 0, 2, 5, 3, 2, 8, 3, 4, 6, 3, 6, 0, 8, 3, 5, 9, 1, 8, 6, 4, 7, 8, 2, 3, 9, 4, 0, 8, 5, 8, 0, 0, 6, 3, 6, 9, 1, 7, 7, 9, 2, 3, 4, 5, 3, 1, 0, 0, 9, 3, 2, 5, 4, 0, 2, 5, 2, 9, 6, 4
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.16096618431506239680530256414364288555074385602532834636083591864782394085800...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(8^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/8)^(n^2)*(1 + 2/(8^n - 1)), n = 1..10), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/8; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(8^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/8^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248726 Decimal expansion of Sum_{k>=1} 1/(9^k - 1).

Original entry on oeis.org

1, 3, 9, 0, 4, 5, 1, 1, 7, 6, 6, 2, 1, 8, 8, 1, 2, 9, 3, 5, 8, 7, 2, 8, 4, 7, 4, 3, 6, 9, 0, 8, 9, 0, 5, 2, 1, 3, 9, 3, 6, 2, 6, 4, 7, 0, 6, 7, 8, 1, 9, 6, 0, 9, 5, 5, 1, 0, 3, 5, 4, 9, 3, 4, 7, 9, 6, 7, 0, 2, 0, 1, 4, 5, 3, 6, 6, 6, 6, 0, 7, 9, 8, 8, 6, 3, 3, 7, 9, 8, 1, 3, 5, 7, 6, 5, 5, 0, 5, 7, 9, 9, 5, 5, 3
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.13904511766218812935872847436908905213936264706781960955103549347967020145366...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(9^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/9)^(n^2)*(1 + 2/(9^n - 1)), n = 1..10), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/9; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(9^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/9^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A066766 Decimal expansion of Sum_{k>=1} sigma(k)/2^k where sigma(k) is the sum of divisors of k, 1 <= d <= k.

Original entry on oeis.org

2, 7, 4, 4, 0, 3, 3, 8, 8, 8, 7, 5, 9, 4, 8, 8, 3, 6, 0, 4, 8, 0, 2, 1, 4, 8, 9, 1, 4, 9, 2, 2, 7, 2, 1, 6, 4, 3, 1, 1, 4, 2, 8, 9, 8, 1, 3, 1, 9, 6, 3, 9, 3, 1, 7, 8, 4, 8, 5, 2, 8, 8, 8, 4, 7, 3, 7, 9, 1, 2, 2, 8, 3, 2, 6, 3, 8, 9, 5, 6, 8, 8, 5, 6, 6, 2, 5, 2, 3, 1, 0, 7, 1, 2, 5, 0, 6, 8, 8, 7, 7, 3, 7, 4, 0
Offset: 1

Views

Author

Randall L Rathbun, Jan 16 2002

Keywords

Examples

			2.74403388875948836048021489149227216431142898131963931784...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Maple
    evalf( add( (1/2)^(n^2) * (n*(4^n - 1) + 2^n)/(2^n - 1)^2, n = 1..20), 100); # Peter Bala, Jan 19 2021
  • Mathematica
    RealDigits[Sum[n/(2^n - 1), {n, 1, 500}], 10, 100][[1]] (* Amiram Eldar, Jun 22 2020 *)
  • PARI
    smv(v)= s=0; for(i=1,matsize(v)[2],s=s+v[i]); s
    A066766(n)= sm=0; for(j=1,n,sm=sm+smv(divisors(j)/2^j)); sm*1.0
    
  • PARI
    suminf(k=1, sigma(k)/2^k) \\ Michel Marcus, Apr 27 2018

Formula

Equals Sum_{k>=1} k/(2^k - 1). - Amiram Eldar, Jun 22 2020
Faster converging series: Sum_{n >= 1} (1/2)^(n^2) * (n*(4^n - 1) + 2^n)/(2^n - 1)^2. - Peter Bala, Jan 19 2021
From Amiram Eldar, Oct 16 2022: (Start)
Equals Sum_{k>=1} 2^k/(2^k - 1)^2.
Equals A065442 + A065443. (End)

Extensions

Name corrected by Paul D. Hanna, Apr 26 2018

A088837 Numerator of sigma(2*n)/sigma(n). Denominator see in A038712.

Original entry on oeis.org

3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 127, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 255, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3, 7, 3, 63, 3, 7, 3, 15, 3, 7, 3, 31, 3, 7, 3, 15, 3
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Comments

In general sigma(2^k*n) / sigma(n) = ((2^k*n) XOR (2^k*n-1)) / (n XOR (n-1)), see link. Jon Maiga, Dec 10 2018

Crossrefs

Programs

  • Maple
    nmax:=93: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+2)-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 09 2013
  • Mathematica
    k=2; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
    Table[BitXor[2*n, 2*n - 1], {n, 128}] (* Jon Maiga, Dec 10 2018 *)
  • PARI
    A088837(n) = numerator(sigma(n<<1)/sigma(n)); \\ Antti Karttunen, Nov 01 2018

Formula

a(n) = 4*2^A007814(n)-1 = 4*A006519(n)-1 = A059159(n)-1 = 2*A038712(n) + 1.
a((2*n-1)*2^p) = 2^(p+2)-1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 09 2013
a(n) = (2n) XOR (2n-1). - Jon Maiga, Dec 10 2018
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A062731(n)/A000203(n)).
Sum_{k=1..n} a(k) ~ (log_2(n) + (gamma-1)/log(2) + 1)*2*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A038712(k) = A065442 + 1 = 2.606695... . (End).

A211705 Decimal expansion of Sum_{n>=1} A006218(n)*2^(-n).

Original entry on oeis.org

3, 2, 1, 3, 3, 9, 0, 3, 0, 4, 8, 3, 0, 5, 8, 3, 5, 2, 7, 5, 6, 6, 6, 0, 3, 0, 4, 6, 3, 8, 1, 8, 4, 9, 1, 6, 0, 9, 6, 1, 1, 5, 9, 3, 4, 3, 0, 1, 1, 5, 1, 2, 8, 7, 1, 5, 5, 6, 1, 5, 9, 1, 0, 7, 3, 8, 2, 8, 3, 6, 8, 4, 1, 4, 8, 6, 9, 7, 3, 3, 8, 1, 1, 3, 1, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Apr 19 2012

Keywords

Examples

			Sum_{n>=1} A006218(n)*2^(-n) = 1/2 + 3/4 + 5/8 + 8/16 + 10/32 + 14/64 + ... = 3.213390304830583527566603046381849...
		

Crossrefs

Cf. A006218, A065442, A211701, A211706 (binary).

Programs

  • Mathematica
    f[n_, m_] := Sum[Floor[n/k], {k, 1, m}]
    t = Table[f[n, 100], {n, 1, 4000}] ;
    N[Sum[t[[n]]/2^n, {n, 1, 4000}], 100]
    RealDigits[%, 10]  (* A211705 *)
    RealDigits[%%, 2]  (* A211706 *)
  • PARI
    k=1.; 2*suminf(n=1, k>>=1; k^n*(1+k)/(1-k)) \\ Charles R Greathouse IV, Jul 18 2021

Formula

Equals 2 * A065442. - Amiram Eldar, Aug 01 2020

Extensions

a(31) onward corrected by Sean A. Irvine, Jun 09 2024

A323482 Decimal expansion of 1/2 + 1/3 + 1/5 + ... + 1/(2^n + 1) + ...

Original entry on oeis.org

1, 2, 6, 4, 4, 9, 9, 7, 8, 0, 3, 4, 8, 4, 4, 4, 2, 0, 9, 1, 9, 1, 3, 1, 9, 7, 4, 7, 2, 5, 5, 4, 9, 8, 4, 8, 2, 5, 5, 7, 6, 9, 6, 9, 9, 8, 8, 5, 7, 5, 2, 5, 6, 2, 6, 5, 6, 6, 2, 3, 7, 9, 6, 0, 2, 6, 5, 8, 7, 5, 6, 7, 9, 7, 6, 6, 0, 0, 7, 0, 8, 5, 0, 6, 1, 9
Offset: 1

Views

Author

Clark Kimberling, Jan 15 2019

Keywords

Examples

			1.2644997803484442091913...
		

Crossrefs

Programs

  • Maple
    evalf((1/2) + add( (-1)^(n+1)*((4^n + 1)/(4^n - 1))*(1/2)^(n^2), n = 1..18), 100); # Peter Bala, Jan 28 2022
  • Mathematica
    s = Sum[1/(2^k + 1), {k, 0, Infinity}]
    r = N[Re[s], 200]
    RealDigits[r][[1]]
  • PARI
    suminf(k=0, 1/(2^k+1)) \\ Michel Marcus, Jan 15 2019

Formula

From Amiram Eldar, Jun 30 2020: (Start)
Equals 1/2 + Sum_{k>=1} (-1)^(k+1)/(2^k-1)
Equals Sum_{k>=1} (mu(k) - (-1)^k)/(2^k-1), where mu is the Möbius function (A008683).
Equals (1 + A179951)/2. (End)
Equals (1/2) + Sum_{n >= 1} (-1)^(n+1)*((4^n + 1)/(4^n - 1))*(1/2)^(n^2). The first 18 terms of the series gives the constant correct to more than 100 decimal places. - Peter Bala, Jan 28 2022

A088839 Numerator of sigma(4n)/sigma(n).

Original entry on oeis.org

7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 85, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 511, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31, 7, 5, 7, 127, 7, 5, 7, 31, 7, 5, 7, 21, 7, 5, 7, 31
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local m;
      m:= padic:-ordp(n,2);
      if m::odd then (2^(m+3)-1)/3 else 2^(m+3)-1 fi
    end proc:
    map(f, [$1..200]); # Robert Israel, Nov 19 2017
  • Mathematica
    k=4; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
  • PARI
    A088839(n) = numerator(sigma(4*n)/sigma(n)); \\ Antti Karttunen, Nov 18 2017

Formula

a(n) = (8*A006519(n)-1)/(1+2*A096268(n)). - Robert Israel, Nov 19 2017
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A193553(n)/A000203(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A088840(k) = 3*A065442 + 1 = 5.820085... . (End)

Extensions

Typo in definition corrected by Antti Karttunen, Nov 18 2017

A203011 (n-1)-st elementary symmetric function of {1,3,7,15,31,63,...-1+2^n}.

Original entry on oeis.org

1, 4, 31, 486, 15381, 978768, 124918731, 31932406170, 16337382642945, 16723323142761060, 34243057328337866295, 140246638967945496322350, 1148847521944847479468879725, 18822284044001939139425413111800, 616761496621711735518439444437389475
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Crossrefs

Cf. A122743.

Programs

  • Maple
    SymmPolyn := proc(L::list,n::integer)
        local c,a,sel;
        a :=0 ;
        sel := combinat[choose](nops(L),n) ;
        for c in sel do
            a := a+mul(L[e],e=c) ;
        end do:
        a;
    end proc:
    A203011 := proc(n)
        local L,k ;
        L := [seq(2^k-1,k=1..n)] ;
        SymmPolyn(L,n-1) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    f[k_] := -1 + 2^k; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A203011 *)
    Table[Product[2^k-1,{k,1,n}] * Sum[1/(2^k-1),{k,1,n}],{n,1,16}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = c * 2^(n*(n+1)/2), where c = A048651 * A065442 = 0.4639944324508904477884... . - Vaclav Kotesovec, Oct 10 2016

A086341 a(n) = 2*2^floor(n/2) - (-1)^n.

Original entry on oeis.org

1, 3, 3, 5, 7, 9, 15, 17, 31, 33, 63, 65, 127, 129, 255, 257, 511, 513, 1023, 1025, 2047, 2049, 4095, 4097, 8191, 8193, 16383, 16385, 32767, 32769, 65535, 65537, 131071, 131073, 262143, 262145, 524287, 524289, 1048575, 1048577, 2097151, 2097153
Offset: 0

Views

Author

Paul Barry, Jul 16 2003

Keywords

Crossrefs

Cf. A016116 (2^floor(n/2)).

Programs

  • Magma
    [2*2^Floor(n/2)-(-1)^n: n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    CoefficientList[Series[(1+2x)^2/((1+x)(1-2x^2)),{x,0,50}],x] (* or *) LinearRecurrence[ {-1,2,2},{1,3,3},50] (* Harvey P. Dale, Mar 10 2013 *)
  • PARI
    vector(40, n, n--; 2^(floor(n/2)+1) - (-1)^n) \\ G. C. Greubel, Nov 08 2018

Formula

E.g.f.: 2*cosh(sqrt(2)*x) + 2*sinh(sqrt(2)*x)/sqrt(2) - sinh(x) + cosh(x).
a(n) = (1 + 1/sqrt(2))*sqrt(2)^n + (1 - 1/sqrt(2))*(-sqrt(2))^n - (-1)^n.
G.f.: (1+2*x)^2/((1+x)*(1-2*x^2)). - Colin Barker, Aug 17 2012
a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3); a(0)=1, a(1)=3, a(2)=3. - Harvey P. Dale, Mar 10 2013
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=0} 1/a(n) = A065442 + A323482 - 1/2.
Sum_{n>=0} (-1)^n/a(n) = 2 * A248721. (End)

A179951 Decimal expansion of Sum_{k has exactly two bits equal to 1 in base 2} 1/k.

Original entry on oeis.org

1, 5, 2, 8, 9, 9, 9, 5, 6, 0, 6, 9, 6, 8, 8, 8, 4, 1, 8, 3, 8, 2, 6, 3, 9, 4, 9, 4, 5, 1, 0, 9, 9, 6, 9, 6, 5, 1, 1, 5, 3, 9, 3, 9, 9, 7, 7, 1, 5, 0, 5, 1, 2, 5, 3, 1, 3, 2, 4, 7, 5, 9, 2, 0, 5, 3, 1, 7, 5, 1, 3, 5, 9, 5, 3, 2, 0, 1, 4, 1, 7, 0, 1, 2, 3, 8, 0, 8, 8, 6, 4, 3, 0, 5, 7, 0, 7, 9, 7, 0, 2, 2, 2, 7, 0
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2010

Keywords

Comments

Obviously for k > 0 in base 2 having no bit equal to 1 the sum is 0 and for 1 bit equal to 1 the sum is 2.

Examples

			Sum_{k>0} 1/A018900(k) = 1.52899956069688841838263949451...
		

Crossrefs

Programs

  • Maple
     evalf( 2*add( (-1)^(n+1)*((4^n + 1)/(4^n - 1))*(1/2)^(n^2), n = 1..18), 100); # Peter Bala, Jan 28 2022
  • Mathematica
    (* first install irwinSums.m, see either reference, then *) First@ RealDigits@ iSum[1, 2, 2^7, 2]

Formula

Equals Sum_{j>=1} Sum_{i=0..j-1} 1/(2^i + 2^j).
From Amiram Eldar, Jun 30 2020: (Start)
Equals Sum_{k>=0} 1/(2^k + 1/2).
Equals 2 * A323482 - 1. (End)
Equals 2*Sum_{n >= 1} (-1)^(n+1)*((4^n + 1)/(4^n - 1))*(1/2)^(n^2). The first 18 terms of the series gives the constant correct to more than 100 decimal places. - Peter Bala, Jan 28 2022
Previous Showing 21-30 of 58 results. Next