cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A377845 Numbers that have more than one odd exponent larger than 1 in their prime factorization.

Original entry on oeis.org

216, 864, 1000, 1080, 1512, 1944, 2376, 2744, 2808, 3000, 3375, 3456, 3672, 4000, 4104, 4320, 4968, 5400, 6048, 6264, 6696, 6750, 7000, 7560, 7776, 7992, 8232, 8856, 9000, 9261, 9288, 9504, 9720, 10152, 10584, 10648, 10976, 11000, 11232, 11448, 11880, 12000, 12744, 13000
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2*(p+1))) * (1 + Sum_{p prime} (1/(p^3+p^2-1))) = 0.0035024748296318122535... .

Crossrefs

Complement of the union of A335275 and A377844.
Subsequence of A295661.
Subsequences: A162142, A179671, A190011.
Cf. A065465.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] > 1; Select[Range[13000], q]
  • PARI
    is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) > 1;

A072779 a(n) = sigma_2(n) + phi(n) * sigma(n).

Original entry on oeis.org

2, 8, 18, 35, 50, 74, 98, 145, 169, 202, 242, 322, 338, 394, 452, 589, 578, 689, 722, 882, 884, 970, 1058, 1330, 1271, 1354, 1540, 1722, 1682, 1876, 1922, 2373, 2180, 2314, 2452, 3003, 2738, 2890, 3044, 3650, 3362, 3652, 3698, 4242, 4238, 4234, 4418
Offset: 1

Views

Author

T. D. Noe, Jul 15 2002

Keywords

Comments

This sequence is interesting because (1) a(n) >= 2 n^2, with equality only when n is prime (or 1) and (2) a(n) = 2 + 2*n^2 if and only if n is the product of two distinct primes. Note for twin primes: let n = m^2 - 1, then m-1 and m+1 are twin primes if and only if a(n) = 2 + 2*n^2. Note for the Goldbach conjecture: let n = m^2 - r^2, then m-r and m+r are primes that add to 2m if and only if a(n) = 2 + 2*n^2. See A072780 for a(n) - 2*n^2.

Crossrefs

Programs

  • Haskell
    a072779 n = a001157 n + (a000203 n) * (a000010 n)
    -- Reinhard Zumkeller, Jan 15 2013
    
  • Mathematica
    Table[DivisorSigma[2, n]+EulerPhi[n]DivisorSigma[1, n], {n, 100}]
  • PARI
    a(n)=sigma(n,2)+eulerphi(n)*sigma(n) \\ Charles R Greathouse IV, May 15 2013

Formula

a(n) = A001157(n) + A000203(n)*A000010(n). - Reinhard Zumkeller, Jan 15 2013
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) + Product_{p prime} (1 - 1/(p^2*(p+1))) = A002117 + A065465 = 2.083570742884... . - Amiram Eldar, Dec 03 2023

A329728 Partial sums of A092261.

Original entry on oeis.org

1, 4, 8, 9, 15, 27, 35, 36, 37, 55, 67, 71, 85, 109, 133, 134, 152, 155, 175, 181, 213, 249, 273, 277, 278, 320, 321, 329, 359, 431, 463, 464, 512, 566, 614, 615, 653, 713, 769, 775, 817, 913, 957, 969, 975, 1047, 1095, 1099, 1100, 1103, 1175, 1189, 1243
Offset: 1

Views

Author

Amiram Eldar, Nov 19 2019

Keywords

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Plus @@ Select[Divisors@ n, Max @@ Last /@ FactorInteger@ # == 1 && GCD[#, n/#] == 1 &], {n, 1, 53}]] (* after Michael De Vlieger at A092261 *)

Formula

Lim_{n->oo} a(n)/n^2 = 1/2 * Product_{p prime}(1 - 1/(p^2*(p+1))) = 1/2 * A065465.

A336223 Numbers k such that the largest square dividing k is a unitary divisor of k and its square root has an even number of distinct prime divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100, 101, 102, 103
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2020

Keywords

Comments

First differs from A333634 at n = 47.
Terms k of A335275 such that A000188(k) is a term of A030231.
Numbers whose powerful part (A057521) is a square term of A030231.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then the largest square dividing k is 1 which is a unitary divisor, sqrt(1) = 1 has 0 prime divisors, and 0 is even.
The asymptotic density of this sequence is (Product_{p prime} (1 - 1/(p^2*(p+1))) + Product_{p prime} (1 - (2*p+1)/(p^2*(p+1))))/2 = (0.881513... + 0.394391...)/2 = 0.637952807730728551636349961980617856650450613867264... (Cohen, 1964; the first product is A065465).

Examples

			36 is a term since the largest square dividing 36 is 36, which is a unitary divisor, sqrt(36) = 6, 6 = 2 * 3 has 2 distinct prime divisors, and 2 is even.
		

Crossrefs

Intersection of A333634 and A335275.

Programs

  • Mathematica
    seqQ[n_] := EvenQ @ Length[(e = Select[FactorInteger[n][[;; , 2]], # > 1 &])] && AllTrue[e, EvenQ[#] &]; Select[Range[100], seqQ]

A377844 Numbers that have a single odd exponent larger than 1 in their prime factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A295661, A325990 and A376142 at n = 24: A295661(24) = A325990(24) = A376142(24) = 216 = 2^3 * 3^3 is not a term of this sequence.
Differs from A060476 by having the terms 432, 648, 1728, ..., and not having the terms 1, 216, 256, 768, 864, ... .
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) * Sum_{p prime} (1/(p^3+p^2-1)) = 0.11498368544519741081... .

Crossrefs

Subsequence of A295661.
Subsequences: A065036, A143610, A163569.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] == 1; Select[Range[500], q]
  • PARI
    is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) == 1;

A386401 a(n) = numerator(sigma(n)*phi(n)/n^2).

Original entry on oeis.org

1, 3, 8, 7, 24, 2, 48, 15, 26, 18, 120, 7, 168, 36, 64, 31, 288, 13, 360, 21, 128, 90, 528, 5, 124, 126, 80, 6, 840, 16, 960, 63, 320, 216, 1152, 91, 1368, 270, 448, 9, 1680, 32, 1848, 105, 208, 396, 2208, 31, 342, 93, 256, 147, 2808, 20, 576, 45, 320, 630, 3480, 56
Offset: 1

Views

Author

Stefano Spezia, Jul 20 2025

Keywords

Comments

a(n)/A386402(n) = sigma(n)*phi(n)*(1/n^2) is a multiplicative function since it is the product of three multiplicative functions.

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 5.3.21 on page 169.

Crossrefs

Cf. A386402 (denominators).

Programs

  • Mathematica
    a[n_]:=Numerator[DivisorSigma[1,n]EulerPhi[n]/n^2]; Array[a,60]
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(f) * eulerphi(f) / n^2);} \\ Amiram Eldar, Jul 21 2025

Formula

From Amiram Eldar, Jul 21 2025: (Start)
Let f(n) = a(n)/A386402(n) = sigma(n)*phi(n)/n^2. Then:
f(n) = A062354(n)/n^2.
f(n) is multiplicative with f(p^e) = 1 - 1/p^(e+1).
Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/p^(s+1) - 1/p^(s+2)+ 1/p^(2*s+2)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465). (End)

A007517 a(n) = phi(n) * (sigma(n) - n).

Original entry on oeis.org

0, 1, 2, 6, 4, 12, 6, 28, 24, 32, 10, 64, 12, 60, 72, 120, 16, 126, 18, 176, 132, 140, 22, 288, 120, 192, 234, 336, 28, 336, 30, 496, 300, 320, 312, 660, 36, 396, 408, 800, 40, 648, 42, 800, 792, 572, 46, 1216, 336, 860, 672, 1104, 52, 1188, 680
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..60],n->Phi(n)*(Sigma(n)-n)); # Muniru A Asiru, Mar 22 2018
    
  • Maple
    with(numtheory): seq(phi(n)*(sigma(n)-n),n=1..60); # Muniru A Asiru, Mar 22 2018
  • Mathematica
    Table[EulerPhi[n](DivisorSigma[1,n]-n),{n,60}] (* Harvey P. Dale, Mar 16 2013 *)
  • PARI
    for(n=1,50, print1(eulerphi(n)*(sigma(n) - n), ", ")) \\ G. C. Greubel, Mar 22 2018

Formula

a(n) = A000010(n)*A001065(n). - Michel Marcus, Mar 22 2018
Sum_{k=1..n} a(k) ~ c * n^2 / 3, where c = A065465 - A059956 = 0.273586... . - Amiram Eldar, Dec 04 2023

A078087 Continued fraction expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).

Original entry on oeis.org

0, 1, 7, 2, 3, 1, 1, 1, 7, 1, 1, 6, 1, 5, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 1, 13, 1, 16, 1, 1, 16, 1, 80, 1, 1, 1, 1, 7, 5, 1, 4, 1, 33, 3, 8, 1, 8, 1, 16, 11, 1, 2, 6, 1, 19, 1, 12, 5, 11, 1, 7, 5, 1, 1, 1, 2, 5, 1, 4, 1, 3, 4, 4, 4, 1, 11, 1, 2, 5, 4, 12, 3, 1, 4, 1, 3, 1, 168, 1, 4, 1, 1
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065465 (decimal expansion).

Programs

  • Mathematica
    digits = 93;
    $MaxExtraPrecision = 4 digits;
    terms = 4 digits;
    LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms + 10]];
    r[n_Integer] := LR[[n]];
    c = Exp[NSum[r[n] PrimeZetaP[n - 1]/(n - 1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]];
    ContinuedFraction[c][[;; digits]] (* Jean-François Alcover, Aug 01 2019 *)
  • PARI
    contfrac(prodeulerrat(1 - 1/(p^2*(p+1)))) \\ Amiram Eldar, Mar 14 2021

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024

A336224 Numbers k such that the largest square dividing k is a unitary divisor of k and its square root has an even number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 100
Offset: 1

Views

Author

Amiram Eldar, Jul 12 2020

Keywords

Comments

Terms k of A335275 such that A000188(k) is a term of A028260.
Numbers whose powerful part (A057521) is the square of a term of A028260.
The squarefree numbers (A005117) are terms of this sequence since if k is squarefree, then the largest square dividing k is 1 which is a unitary divisor, sqrt(1) has 0 prime divisors, and 0 is even.
The asymptotic density of this sequence is (5 * Product_{p prime} (1 - 1/(p^2*(p+1))) + 2 * Product_{p prime} (1 + 1/(p^2*(p+1))))/10 = (5 * 0.881513... + 2 * 1.125606...)/10 = 0.665878294481337275662425136416469977597382409701642... (Cohen, 1964; the first product is A065465).

Examples

			16 is a term since the largest square dividing 16 is 16, which is a unitary divisor, sqrt(16) = 4, 4 = 2 * 2 has 2 prime divisors, and 2 is even.
		

Crossrefs

Intersection of A335275 and A336222.

Programs

  • Mathematica
    seqQ[n_] := AllTrue[(e = FactorInteger[n][[;; , 2]]), # == 1 || EvenQ[#] &] && EvenQ @ Total[Select[e, # > 1 &]/2]; Select[Range[100], seqQ]

A357684 The squarefree part (A007913) of numbers whose squarefree part is a unitary divisor (A335275).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 1, 26, 7, 29, 30, 31, 33, 34, 35, 1, 37, 38, 39, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 55, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 73, 74, 3, 19, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := If[AllTrue[(f = FactorInteger[n])[[;; , 2]], # == 1 || EvenQ[#] &], i = Position[f[[;; , 2]], 1] // Flatten; Times @@ f[[i, 1]], Nothing]; Array[s, 100]
  • PARI
    s(n) = {my(f = factor(n), ans = 1); for(k = 1, #f~, if(f[k,2] > 1 && f[k,2]%2, ans = 0)); if(ans, ans = prod(k = 1, #f~, if(f[k,2] == 1, f[k,1], 1))) };
    for(n = 1, 100, if(s(n) > 0, print1(s(n), ", ")))

Formula

a(n) = A007913(A335275(n)).
a(n) = 1 iff A335275(n) is a square (A000290).
a(n) = A335275(n) iff A335275(n) is squarefree (A005117).
Sum_{k, a(k) <= x} ~ c*x^2 + o(x^2), where c = (3/Pi^2) * Sum_{k>=1} f(k)/k^4 = 0.32103327852028541131..., and f(k) = Product_{p prime | k} (p/(p+1)) (Jakimczuk, 2017).
Sum_{k=1..n} a(k) ~ c'*x^2 + o(x^2), where c' = c / (A065465)^2 = 0.41313480468422995583... .
Previous Showing 21-30 of 32 results. Next