cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A004931 a(n) = floor(n*phi^16), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 2206, 4413, 6620, 8827, 11034, 13241, 15448, 17655, 19862, 22069, 24276, 26483, 28690, 30897, 33104, 35311, 37518, 39725, 41932, 44139, 46346, 48553, 50760, 52967, 55174, 57381, 59588, 61795
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((2207+987*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Sep 06 2023
    
  • Mathematica
    Floor[GoldenRatio^(16)*Range[0, 60]] (* G. C. Greubel, Sep 06 2023 *)
  • SageMath
    [floor(golden_ratio^(16)*n) for n in range(61)] # G. C. Greubel, Sep 06 2023

A004933 a(n) = floor(n*phi^18), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 5777, 11555, 17333, 23111, 28889, 34667, 40445, 46223, 52001, 57779, 63557, 69335, 75113, 80891, 86669, 92447, 98225, 104003, 109781, 115559, 121337, 127115, 132893, 138671, 144449, 150227
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor((2889+1292*Sqrt(5))*n): n in [0..60]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    With[{p=GoldenRatio^18},Floor[p*Range[0,30]]] (* Harvey P. Dale, Mar 06 2022 *)
  • SageMath
    [floor(golden_ratio^(18)*n) for n in range(61)] # G. C. Greubel, Sep 11 2023

A004935 a(n) = floor(n*phi^20), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 15126, 30253, 45380, 60507, 75634, 90761, 105888, 121015, 136142, 151269, 166396, 181523, 196650, 211777, 226904, 242031, 257158, 272285, 287412, 302539, 317666, 332793, 347920, 363047, 378174
Offset: 0

Views

Author

Keywords

Comments

From Joerg Arndt, Sep 12 2023: (Start)
phi^20 = 15126.999933893... is a near integer.
Therefore the (incorrect!) g.f. 1 + (-1 + 15128*x)/(1-x)^2 produces the initial about 15000 terms of this sequence.
(End)

Crossrefs

Programs

  • Magma
    [Floor((15127+6765*Sqrt(5))*n/2): n in [0..60]]; // G. C. Greubel, Sep 12 2023
    
  • Mathematica
    With[{c=GoldenRatio^20},Floor[c Range[0,30]]] (* Harvey P. Dale, Feb 18 2013 *)
  • SageMath
    [floor(golden_ratio^(20)*n) for n in range(61)] # G. C. Greubel, Sep 12 2023

A060143 a(n) = floor(n/tau), where tau = (1 + sqrt(5))/2.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2001

Keywords

Comments

Fibonacci base shift right: for n >= 0, a(n+1) = Sum_{k in A_n} F_{k-1}, where n = Sum_{k in A_n} F_k (unique) expression of n as a sum of "noncontiguous" Fibonacci numbers (with index >=2). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001 [corrected, and aligned with sequence offset by Peter Munn, Jan 10 2018]
Numerators a(n) of fractions slowly converging to phi, the golden ratio: let a(1) = 0, b(n) = n - a(n); if (a(n) + 1) / b(n) < (1 + sqrt(5))/2, then a(n+1) = a(n) + 1, else a(n+1) = a(n). a(n) + b(n) = n and as n -> +infinity, a(n) / b(n) converges to (1 + sqrt(5))/2. For all n, a(n) / b(n) < (1 + sqrt(5))/2. - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002
a(10^n) gives the first few digits of phi=(sqrt(5)-1)/2.
Comment corrected, two alternative ways, by Peter Munn, Jan 10 2018: (Start)
(a(n) = a(n+1) or a(n) = a(n-1)) if and only if a(n) is in A066096.
a(n+1) = a(n+2) if and only if n is in A003622.
(End)
From Wolfdieter Lang, Jun 28 2011: (Start)
a(n+1) counts for n >= 1 the number of Wythoff A-numbers not exceeding n.
a(n+1) counts also the number of Wythoff B-numbers smaller than A(n+2), with the Wythoff A- and B-sequences A000201 and A001950, respectively.
a(n+1) = Sum_{j=1..n} A005614(j-1) for n >= 1 (no rounding problems like in the above definition, because the rabbit sequence A005614(n-1) for n >= 1, can be defined by a substitution rule).
a(n+1) = A(n+1)-(n+1) (serving, together with the last equation, as definition for A(n+1), given the rabbit sequence).
a(n+1) = A005206(n), n >= 0.
(End)
Let b(n) = floor((n+1)/phi). Then b(n) + b(b(n-1)) = n [Granville and Rasson]. - N. J. A. Sloane, Jun 13 2014

Examples

			a(6)= 3 so b(6) = 6 - 3 = 3. a(7) = 4 because (a(6) + 1) / b(6) = 4/3 which is < (1 + sqrt(5))/2. So b(7) = 7 - 4 = 3. a(8) = 4 because (a(7) + 1) / b(7) = 5/3 which is > (1 + sqrt(5))/2. - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002
From _Wolfdieter Lang_, Jun 28 2011: (Start)
There are a(4) = 2 (positive) Wythoff A-numbers <= 3, namely 1 and 3.
There are a(4) = 2 (positive) Wythoff B-numbers < A(4) = 6, namely 2 and 5.
a(4) = 2 = A(4) - 4 = 6 - 4.
(End)
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A003622, A022342, A035336.
Terms that occur only once: A001950.
Terms that occur twice: A066096 (a version of A000201).
Numerator sequences for other values, as described in Robert A. Stump's 2002 comment: A074065 (sqrt(3)), A074840 (sqrt(2)).
Apart from initial terms, same as A005206.
First differences: A096270 (a version of A005614).
Partial sums: A183136.

Programs

  • Magma
    [Floor(2*n/(1+Sqrt(5))): n in [0..80]]; // Vincenzo Librandi, Mar 29 2015
    
  • Mathematica
    Floor[Range[0,80]/GoldenRatio] (* Harvey P. Dale, May 09 2013 *)
  • PARI
    { default(realprecision, 10); p=(sqrt(5) - 1)/2; for (n=0, 1000, write("b060143.txt", n, " ", floor(n*p)); ) } \\ Harry J. Smith, Jul 02 2009
    
  • Python
    from math import isqrt
    def A060143(n): return (n+isqrt(5*n**2)>>1)-n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = floor(phi(n)), where phi=(sqrt(5)-1)/2. [corrected by Casey Mongoven, Jul 18 2008]
a(F_n + 1) = F_{n-1} if F_n is the n-th Fibonacci number. [aligned with sequence offset by Peter Munn, Jan 10 2018]
a(1) = 0. b(n) = n - a(n). If (a(n) + 1) / b(n) < (1 + sqrt(5))/2, then a(n+1) = a(n) + 1, else a(n+1) = a(n). - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002 [corrected by Peter Munn, Jan 07 2018]
A006336(n) = A006336(n-1) + A006336(a(n)) for n>1. - Reinhard Zumkeller, Oct 24 2007
a(n) = floor(n*phi) - n, where phi = (1+sqrt(5))/2. - William A. Tedeschi, Mar 06 2008
Celaya and Ruskey give an interesting formula for a(n). - N. J. A. Sloane, Jun 13 2014

Extensions

I merged three identical sequences to create this entry. Some of the formulas may need their initial terms adjusting now. - N. J. A. Sloane, Mar 05 2003
More terms from William A. Tedeschi, Mar 06 2008

A082389 a(n) = floor((n+2)*phi) - floor((n+1)*phi) where phi=(1+sqrt(5))/2.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2003

Keywords

Comments

Alternative descriptions (1): unique positive integer sequence taking values in {1,2} satisfying a(1)=1, a(2)=2 and a(a(1)+...+a(n))=a(n) for n >= 3.
(2) Start with 1,2; then for any k>=1, a(a(1)+...+a(k))=a(k), fill in any undefined terms by the rule that a(t) = 1 if a(t-1) = 2 and a(t) = 2 if a(t-1) = 1.
(3) a(1)= 1, a(2)=2, a(a(1)+a(2)+...+a(n))=a(n); a(a(1)+a(2)+...+a(n)+1)=3-a(n).
More generally, the sequence a(n)=floor(r*(n+2))-floor(r*(n+1)), r= (1/2) *(z+sqrt(z^2+4)), z integer >=1, is defined by a(1), a(2) and a(a(1)+a(2)+...+a(n)+f(z))=a(n); a(a(1)+a(2)+...+a(n)+f(z)+1)=(2z+1)-a(n) where f(1)=0, f(z)=z-2 for z>=2.

Examples

			a(1)+a(2)=3 and a(a(1)+a(2)) must be a(2) so a(3)=2. Therefore a(a(1)+a(2)+a(3))=a(5)=2 and from the rule the "hole" a(4) is 1. Hence sequence begins 1,2,2,1,2,...
		

Crossrefs

Same as A014675 without the first term.

Programs

  • Maple
    A082389:=n->floor((n+2)*(1+sqrt(5))/2) - floor((n+1)*(1+sqrt(5))/2): seq(A082389(n), n=1..300); # Wesley Ivan Hurt, Jan 16 2017
  • Mathematica
    Rest@Nest[ Flatten[ # /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 11] (* Robert G. Wilson v, Jan 26 2006 *)
    #[[2]]-#[[1]]&/@Partition[Table[Floor[GoldenRatio n],{n,0,110}],2,1] (* Harvey P. Dale, Sep 04 2019 *)
    Differences[Floor[GoldenRatio Range[2,150]]] (* Harvey P. Dale, Dec 02 2024 *)
  • Python
    from math import isqrt
    def A082389(n): return (n+2+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 29 2022

Formula

a(n) = A014675(n+1); sum(k = 1, n, a(k)) = A058065(n)
Apparently a(n) = A059426(n).
a(n) = A066096(n+2)-A066096(n+1). - R. J. Mathar, Aug 02 2024

A381110 a(n) is the maximum number of points from the set {(k, f(k)); k = 0..n} belonging to a straight line passing through the point (n, f(n)), where f(n) = A060143(n) = floor(n/phi) and phi is the golden ratio (sqrt(5)+1)/2.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 4, 3, 5, 3, 4, 4, 4, 5, 3, 5, 4, 4, 6, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 7, 6, 7, 5, 7, 8, 6, 8, 6, 7, 9, 6, 9, 7, 6, 10, 6, 7, 8, 7, 11, 7, 7, 9, 7, 12, 7, 8, 10, 8, 8, 8, 8, 11, 8, 9, 9, 9, 9, 8, 9, 10, 9, 10, 9, 10, 11, 8, 10, 10, 10, 11, 8
Offset: 0

Views

Author

Pontus von Brömssen, Feb 14 2025

Keywords

Comments

The sequence would remain the same if A060143 in the definition were replaced with A066096, i.e., if points (k, floor(k*phi)) were considered instead of (k, floor(k/phi)).

Crossrefs

A000202 a(8i+j) = 13i + a(j), where 1<=j<=8.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 34, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 64, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105, 107, 108, 110
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Different from A000201, A066096, A090908.
Cf. A000045.

Programs

  • Maple
    a[0] := 0:a[1] := 1:a[2] := 3:a[3] := 4:a[4] := 6:a[5] := 8:a[6] := 9:a[7] := 11:a[8] := 12: for m from 9 to 200 do if irem(m,8)=0 then myrem := 8; myquo := iquo(m,8)-1; else myrem := irem(m,8); myquo := iquo(m,8) fi; a[m] := 13*myquo +a[myrem] od: for k from 1 to 200 do printf(`%a,`,a[k]) od: # James Sellers, May 29 2000
  • Mathematica
    Set[#, {1, 3, 4, 6, 8, 9, 11, 12}] &@ Map[a[#] &, Range[0, 7]]; a[n_] := a[n] = 13 #1 + a[#2] & @@ QuotientRemainder[n, 8]; Array[a, 68, 0] (* Michael De Vlieger, Sep 08 2017 *)
  • PARI
    a(n) = floor((13*n - 1)/8); \\ Jon E. Schoenfield, Aug 21 2022

Formula

a(n) = floor((13*n - 1)/8). - Jon E. Schoenfield, Aug 21 2022
a(Fibonacci(n)-1) = Fibonacci(n+1) - 2, for n>=6 (Peters, 1981). - Amiram Eldar, Jan 27 2022

Extensions

More terms from James Sellers, May 29 2000
Previous Showing 21-27 of 27 results.