cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A049226 Composite numbers n such that the sum of divisors of n, sigma(n), divided by the number of divisors, d(n) and sigma(n) minus n are both rational squares.

Original entry on oeis.org

119, 527, 1196, 3591, 5831, 6887, 12319, 15407, 18575, 33271, 47959, 51119, 56853, 63119, 65151, 116399, 176911, 328151, 373319, 437999, 438311, 520319, 568519, 724687, 734111, 851927, 957551, 1059191, 1140071, 1437599, 1760831, 1813511, 2320919, 3354479, 3383420
Offset: 1

Views

Author

Keywords

Comments

The prime numbers with this property are primes of the form 2*k^2 - 1 (A066436). - Amiram Eldar, Aug 15 2019
The first terms for which the ratio sigma(n)/d(n) is not an integer are 267910912, 1398459816, and 1703794876. - Giovanni Resta, Aug 30 2019

Examples

			a(27) = 957551 is a term since the sum of its 16 divisors is sigma(957551) = 1166400 and both 1166400/16 = 72900 = 270^2 and 1166400 - 957551 = 208849 = 457^2 are perfect squares.
		

Crossrefs

Programs

  • Magma
    [m:m in [1..3400000]|not IsPrime(m) and IsSquare(SumOfDivisors(m)/#Divisors(m)) and IsSquare(SumOfDivisors(m)-m)]; // Marius A. Burtea, Aug 15 2019
  • Mathematica
    Select[Range[10^5], CompositeQ[#] && And @@ IntegerQ /@ Sqrt[{(s = DivisorSigma[1, #]) * DivisorSigma[0, #], s - #}] &] (* Amiram Eldar, Aug 15 2019 *)
    cnQ[n_]:=With[{sg=DivisorSigma[1,n]},CompositeQ[n]&&AllTrue[{Sqrt[sg/DivisorSigma[0,n]],Sqrt[sg-n]},IntegerQ]]; Select[Range[ 339*10^4],cnQ] (* Harvey P. Dale, Mar 31 2025 *)
  • PARI
    is(n) = my(f = factor(n), s = sigma(f), nd = numdiv(f)); issquare(s/nd) && issquare(s - n) && !isprime(n) \\ David A. Corneth, Aug 15 2019
    

Extensions

Name and offset corrected by Amiram Eldar, Aug 15 2019

A143832 Primes of the form 14 n^2-1.

Original entry on oeis.org

13, 223, 349, 503, 1399, 1693, 3583, 6173, 9463, 16183, 18143, 27103, 28349, 33613, 40823, 42349, 48733, 59149, 66653, 70573, 80863, 89599, 101149, 115933, 126349, 129023, 139999, 151423, 157303, 169399, 181943, 185149, 201599, 204973, 218749
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Comments

Primes of the form k n^2-1 k = 2 A066436 these n are A066049 k = 4 only one prime 3 when n = 1 k = 6 A090686 these n are A143826 k = 8 A090684 these n are A143827 k =10 A143828 these n are A143829 k =12 A143830 these n are A143831 k =14 A143832 these n are A143833 k =16 lack of primes

Crossrefs

Programs

  • Mathematica
    p = 14; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, k]], {x, 1, 1000}]; a
    Select[14*Range[200]^2-1,PrimeQ] (* Harvey P. Dale, Jul 29 2024 *)

A160697 Record values in A160696.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 11, 13, 15, 17, 18, 21, 22, 24, 25, 28, 34, 36, 38, 39, 41, 42, 43, 45, 46, 49, 50, 52, 56, 59, 62, 63, 64, 69, 73, 76, 80, 81, 85, 87, 91, 92, 95, 98, 102, 108, 109, 112, 113, 115, 118, 125, 126, 127, 132, 134, 137, 140, 141, 143, 153, 154, 155
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2009

Keywords

Comments

a(n)=A160696(A160698(n)) and A160696(m)A160698(n);
for n>1: a(n)=A066049(n-1) and A066436(n-1)+1=2*a(n)^2.

A182784 Primes of the form 2*n^4-1.

Original entry on oeis.org

31, 1249, 2591, 4801, 8191, 13121, 76831, 131071, 388961, 1062881, 1229311, 2672671, 6223391, 7496191, 9759361, 10616831, 12499999, 13530401, 29552671, 31505921, 35701249, 42762751, 48019999, 63281249, 66724351, 77900161, 90424351, 99574271, 149610401
Offset: 1

Views

Author

Vincenzo Librandi, Dec 02 2010

Keywords

Comments

Subsequence of A066436. - R. J. Mathar, Dec 02 2010

Crossrefs

Programs

  • Magma
    [a: n in [1..350] | IsPrime(a) where a is 2*n^4-1];
  • Mathematica
    Select[Table[2 n^4 - 1, {n, 100}], PrimeQ] (* Vincenzo Librandi, Sep 01 2012 *)

Formula

a(n) = 2*A182783(n)^4-1. - R. J. Mathar, Dec 02 2010

A234638 Numbers n for which sigma(sigma(n)) is odd.

Original entry on oeis.org

1, 3, 7, 10, 17, 21, 22, 30, 31, 46, 51, 52, 55, 66, 70, 71, 81, 93, 94, 97, 106, 115, 119, 127, 138, 154, 156, 165, 170, 199, 210, 213, 214, 217, 232, 235, 241, 253, 265, 282, 291, 298, 310, 318, 322, 337, 343, 345, 357, 364, 374, 381, 382, 385
Offset: 1

Views

Author

M. F. Hasler, Dec 28 2013

Keywords

Comments

See A234641 for numbers n such that n^2 is in this sequence.
The primes in this sequence are 3 and A066436. - Robert Israel, Apr 05 2019

Examples

			3 is in the sequence because sigma(sigma(3)) = sigma(4) = 7, which is odd.
7 is in the sequence because sigma(sigma(7)) = sigma(8) = 15, which is odd.
8 is not in the sequence because sigma(sigma(8)) = sigma(15) = 24, which is even.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory; sigma(sigma(n))::odd end proc:
    select(filter, [$1..1000]); # Robert Israel, Apr 05 2019
  • Mathematica
    Select[Range[400], OddQ[DivisorSigma[1, DivisorSigma[1, #]]] &] (* Alonso del Arte, Dec 29 2013 *)
  • PARI
    is(n)=bittest(sigma(sigma(n)),0)
    
  • PARI
    for(n=1,999,is(n)&&print1(n","))

A249446 Numbers n such that 2*(n^2-1) - 1 and 2*(n^2-1) + 1 are primes.

Original entry on oeis.org

2, 4, 10, 11, 34, 41, 46, 49, 56, 59, 76, 85, 95, 125, 160, 181, 185, 196, 200, 206, 220, 245, 266, 280, 295, 301, 304, 346, 365, 379, 386, 391, 440, 470, 505, 556, 571, 595, 659, 679, 689, 731, 784, 815, 820, 854, 869, 896, 944, 959, 994, 1001, 1004, 1015, 1025, 1154, 1250, 1345, 1376
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 29 2014

Keywords

Comments

Subsequence of A066049. - Michel Marcus, Oct 29 2014
n such that 2*n^2 - 2 is in A014574. - Robert Israel, Nov 18 2014

Examples

			2 is in this sequence because 2*(2^2-1) - 1 = 5 and 2*(2^2-1) + 1 = 7 are both prime.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..1400] | IsPrime(2*(n^2-1)-1) and IsPrime(2*(n^2-1)+1) ];
    
  • Maple
    select(n -> isprime(2*n^2-3) and isprime(2*n^2-1), [$1 .. 10000]); # Robert Israel, Nov 18 2014
  • Mathematica
    Select[Range[0, 1500], PrimeQ[2 #^2 - 3] && PrimeQ[2 #^2 - 1] &] (* Vincenzo Librandi, Oct 29 2014 *)
  • PARI
    isok(n) = isprime(2*(n^2-1) - 1) && isprime(2*(n^2-1) + 1); \\ Michel Marcus, Oct 31 2014

A164041 Primes of the form 2*p^2 + 4*p + 1, where p is also prime.

Original entry on oeis.org

17, 31, 71, 127, 647, 1151, 2887, 3527, 7687, 12799, 19207, 20807, 23327, 34847, 39199, 49927, 53791, 73727, 79999, 103967, 117127, 145799, 172871, 194687, 220447, 279751, 294911, 323207, 336199, 387199, 394271, 419527, 438047, 587527, 649799, 724807
Offset: 1

Views

Author

Vincenzo Librandi, Aug 08 2009

Keywords

Comments

A subsequence of the primes of the form 2k^2+4k+1 = 2*(k+1)^2-1, A066436. - R. J. Mathar, Aug 10 2009

Programs

  • Magma
    [a: p in PrimesUpTo(700)|IsPrime(a) where a is 2*p^2+4*p+1 ] // Vincenzo Librandi, Sep 01 2012
    
  • Mathematica
    lst={}; Do[p=Prime@n; a=2*p^2+4*p+1; If[PrimeQ@a,AppendTo[lst,a]],{n,7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
    Select[Table[2p^2+4p+1,{p,Prime[Range[200]]}],PrimeQ] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if(isprime(q=2*p^2+4*p+1), print1(q, ", ")));} \\ Altug Alkan, Mar 29 2018

Formula

a(n) = 2*(A164042(n))^2 + 4*A164042(n) + 1.

Extensions

a(29) corrected by R. J. Mathar, Aug 11 2009
Edited by N. J. A. Sloane, Aug 11 2009

A245042 Primes of the form (k^2+4)/5.

Original entry on oeis.org

17, 73, 89, 193, 337, 521, 953, 1009, 1249, 1657, 2377, 2833, 3329, 3433, 4441, 4561, 5849, 6553, 7297, 8081, 8737, 9769, 11617, 12401, 12601, 13417, 15569, 16937, 17881, 18121, 20353, 21649, 27529, 28729, 29033, 30577, 33457, 35449, 36809, 46273, 49801
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Comments

Also equal to primes p such that 5*p-4 is a perfect square.

Crossrefs

Programs

  • Mathematica
    Select[(Range[500]^2+4)/5,PrimeQ] (* Harvey P. Dale, Jul 13 2014 *)
  • Python
    import sympy
    L = (k**2 + 4 for k in range(10**3))
    [n//5 for n in L if n % 5 == 0 and sympy.ntheory.isprime(n//5)]

A245045 Primes of the form (k^2+2)/6.

Original entry on oeis.org

3, 11, 17, 43, 67, 113, 131, 193, 241, 353, 523, 641, 683, 1291, 1601, 1667, 1873, 2017, 2243, 2731, 3083, 3361, 3851, 4483, 4817, 4931, 5281, 5521, 7211, 8363, 8513, 8971, 9283, 9923, 10753, 11971, 13633, 16433, 17713, 18371, 18593, 19267, 21841, 22571
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Examples

			When k=4, (k^2+2)/6 = 3 is prime, so 4 is a member of the sequence. since putting k = 0, 1, 2, or 3 does not give a prime, so 4 is the first term.
		

Crossrefs

Cf. A154616, A002327, A066436. First 5 terms equal to A078116. First 4 terms equal to A127996.

Programs

  • Python
    import sympy
    [(k**2+2)/6 for k in range(10**6) if sympy.ntheory.isprime((k**2+2)/6) & ((k**2+2)/6).is_integer()]

A327830 Numbers m such that the geometric mean of tau(m) and sigma(m) is an integer.

Original entry on oeis.org

1, 7, 17, 22, 30, 31, 71, 94, 97, 115, 119, 127, 138, 154, 164, 165, 199, 210, 214, 217, 232, 241, 260, 265, 318, 337, 343, 374, 382, 449, 497, 510, 513, 517, 527, 577, 647, 658, 668, 679, 682, 705, 745, 759, 805, 862, 881, 889, 894, 930, 966, 967, 996, 1102, 1125
Offset: 1

Views

Author

Bernard Schott, Sep 27 2019

Keywords

Comments

The first 20 terms of this sequence are also the first 20 terms of A144695: m such that sigma(m)/tau(m) is a square. Indeed, if sigma(m)/tau(m) is a square then sigma(m)*tau(m) is also a square, but the converse is false. These counterexamples are in A327831; the first one is a(21) = 232.
The primes p of the form 2*k^2 - 1: 7, 17, 31, 71, ... (A066436) form a subsequence because sigma(p) * tau(p) = (2*k)^2.
Another subsequence consists of the terms m such that sigma(m) and tau(m) are both squares; this occurs when m is the product of two distinct primes p*q, p < q where sigma(m) = (p+1)*(q+1) is a square and tau(m) = 4. The first few terms are 22, 94, 115, 119, 214, ... They are in A256152.

Examples

			sigma(30) = 72 and tau(30) = 8, sigma(30)*tau(30) = 576 = 24^2, hence 30 is a term.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A064840 (tau*sigma).
Cf. A011257 (similar, with phi(m) and sigma(m)), A144695 (sigma(m)/tau(m) is a square), A327831 (sigma(m) * tau(m) is a square but sigma(m)/tau(m) is not an integer).
Subsequences: A066436, A256152.

Programs

  • Magma
    [k:k in [1..1150]| IsSquare(#Divisors(k)*DivisorSigma(1,k))]; // Marius A. Burtea, Sep 27 2019
    
  • Maple
    filter:= s -> issqr(sigma(s)*tau(s)) : select(filter, [$1..2500]);
  • Mathematica
    Select[Range[1000], IntegerQ @ Sqrt[DivisorSigma[0, #] * DivisorSigma[1, #]] &] (* Amiram Eldar, Sep 27 2019 *)
  • PARI
    isok(m) = issquare(numdiv(m)*sigma(m)); \\ Michel Marcus, Sep 27 2019
Previous Showing 31-40 of 47 results. Next