cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 64 results. Next

A153644 a(n) = 4*n^2 + 28*n + 10.

Original entry on oeis.org

42, 82, 130, 186, 250, 322, 402, 490, 586, 690, 802, 922, 1050, 1186, 1330, 1482, 1642, 1810, 1986, 2170, 2362, 2562, 2770, 2986, 3210, 3442, 3682, 3930, 4186, 4450, 4722, 5002, 5290, 5586, 5890, 6202, 6522, 6850, 7186, 7530, 7882, 8242, 8610, 8986, 9370
Offset: 1

Views

Author

Vincenzo Librandi, Dec 30 2008

Keywords

Comments

Sequence gives values of x such that x^3 + 39x^2 = y^2 since a(n)^3 + 39*a(n)^2 = (8n^3 + 84n^2 + 216n + 70)^2.
a(n) = 2*(seventh diagonal to A153238).
About the first comment, naturally, the complete list of nonnegative values of x in x^3 + 39*x^2 = y^2 is given by x = m^2-39 with m>6. - Bruno Berselli, Jan 25 2012

Crossrefs

Programs

Formula

From Colin Barker, Jan 24 2012: (Start)
a(1)=42, a(2)=82, a(3)=130, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*((3-x)*(7-5*x))/(1-x)^3. (End)
E.g.f.: 2*(-5 + (5 + 16*x + 2*x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
Sum_{n>=1} 1/a(n) = 62/1995 + tan(sqrt(39)*Pi/2)*Pi/(4*sqrt(39)). - Amiram Eldar, Mar 02 2023

A154575 a(n) = 2*n^2 + 12*n + 4.

Original entry on oeis.org

18, 36, 58, 84, 114, 148, 186, 228, 274, 324, 378, 436, 498, 564, 634, 708, 786, 868, 954, 1044, 1138, 1236, 1338, 1444, 1554, 1668, 1786, 1908, 2034, 2164, 2298, 2436, 2578, 2724, 2874, 3028, 3186, 3348, 3514, 3684, 3858, 4036, 4218, 4404, 4594, 4788, 4986, 5188
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Sixth diagonal of A144562.
2*a(n) + 28 is a square.

Crossrefs

Programs

  • Magma
    I:=[18, 36, 58]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {18, 36, 58}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Table[2n^2+12n+4,{n,50}] (* Harvey P. Dale, Sep 18 2019 *)
  • PARI
    for(n=1, 50, print1(2*n^2+12*n+4", ")); \\ Vincenzo Librandi, Feb 26 2012

Formula

From R. J. Mathar, Jan 05 2011: (Start)
a(n) = 2*A028881(n+3).
G.f.: -2*x*(2*x-3)*(x-3)/(x-1)^3. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 26 2012
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/28 - cot(sqrt(7)*Pi)*Pi/(4*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 31/84 - cosec(sqrt(7)*Pi)*Pi/(4*sqrt(7)). (End)
E.g.f.: 2*exp(x)*(x^2 + 7*x + 2). - Elmo R. Oliveira, Nov 02 2024

A154590 a(n) = 2*n^2 + 16*n + 6.

Original entry on oeis.org

24, 46, 72, 102, 136, 174, 216, 262, 312, 366, 424, 486, 552, 622, 696, 774, 856, 942, 1032, 1126, 1224, 1326, 1432, 1542, 1656, 1774, 1896, 2022, 2152, 2286, 2424, 2566, 2712, 2862, 3016, 3174, 3336, 3502, 3672, 3846, 4024, 4206, 4392, 4582, 4776, 4974, 5176
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Eighth diagonal of A144562.
2*a(n) + 52 is a square.

Crossrefs

Programs

  • Mathematica
    Table[2n^2+16n+6,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{24,46,72},50] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    a(n)=2*n^2+16*n+6 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 2*A116711(n+3).
G.f.: -2*x*(3*x-4)*(x-3)/(x-1)^3.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 35/468 - cot(sqrt(13)*Pi)*Pi/(4*sqrt(13)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 121/468 + cosec(sqrt(13)*Pi)*Pi/(4*sqrt(13)). (End)
From Elmo R. Oliveira, Jun 04 2025: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 9*x + 3) - 3).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Corrected (a(31) added) by Harvey P. Dale, Dec 27 2011

A154599 a(n) = 2*n^2 + 20*n + 8.

Original entry on oeis.org

30, 56, 86, 120, 158, 200, 246, 296, 350, 408, 470, 536, 606, 680, 758, 840, 926, 1016, 1110, 1208, 1310, 1416, 1526, 1640, 1758, 1880, 2006, 2136, 2270, 2408, 2550, 2696, 2846, 3000, 3158, 3320, 3486, 3656, 3830, 4008, 4190, 4376, 4566, 4760, 4958, 5160
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2009

Keywords

Comments

Tenth diagonal of A144562.
2*a(n) + 84 is a square.

Crossrefs

Programs

  • Magma
    I:=[30, 56, 86]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {30, 56, 86}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
    Table[2n^2+20n+8,{n,50}] (* Harvey P. Dale, Jun 15 2019 *)
  • PARI
    for(n=1, 40, print1(2*n^2+20*n+8", ")); \\ Vincenzo Librandi, Feb 26 2012
    
  • SageMath
    [2*n^2+20*n+8 for n in range(1,41)] # G. C. Greubel, May 30 2024

Formula

From R. J. Mathar, Jan 05 2011: (Start)
a(n) = 2*A127147(n+13).
G.f.: 2*x*(5-4*x)*(3-x)/(1-x)^3. (End)
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=1} 1/a(n) = 79/952 - cot(sqrt(21)*Pi)*Pi/(4*sqrt(21)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2851/14280 - cosec(sqrt(21)*Pi)*Pi/(4*sqrt(21)). (End)
E.g.f.: 2*(-4 + (4 + 11*x + x^2)*exp(x)). - G. C. Greubel, May 30 2024

A160973 a(n) is the number of positive integers of the form (n-3k)/(2k+1), 1 <= k <= (n-1)/5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 3, 0, 1, 1, 0, 2, 1, 0, 0, 3, 2, 0, 1, 0, 0, 3, 2, 0, 2, 0, 2, 1, 0, 2, 1, 2, 0, 3, 0, 0, 5, 0, 0, 1, 0, 2, 3, 2, 1, 1, 2, 0, 1, 0, 2, 5, 0, 0, 1, 2, 2, 3, 0, 0, 3, 2, 0, 1, 2, 0, 5, 0, 1, 3, 0, 4, 1, 0, 0, 1
Offset: 0

Views

Author

Vladimir Shevelev, Jun 01 2009, Jun 07 2009

Keywords

Comments

If n is different from 3, then a(n)=0 iff n is in A067076, i.e., 2n+3 is prime.

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[Select[Range[Floor[(n-1)/5]], IntegerQ[(n-3#)/(2#+1)] &]]; Array[a, 100, 0] (* Amiram Eldar, Dec 15 2018 *)
  • PARI
    a(n) = sum(k=1, (n-1)/5, frac((n-3*k)/(2*k+1)) == 0); \\ Michel Marcus, Dec 15 2018

Extensions

Edited by N. J. A. Sloane, Jun 07 2009
a(44) corrected and more terms from Michel Marcus, Dec 15 2018

A161116 a(n) is the number of nontrivial positive divisors of 2n+3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 2, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 4, 2, 0, 2, 0, 0, 4, 2, 0, 3, 0, 2, 2, 0, 2, 2, 2, 0, 4, 0, 0, 6, 0, 0, 2, 0, 2, 4, 2, 1, 2, 2, 0, 2, 0, 2, 6, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 2, 2, 0, 6, 0, 1, 4, 0, 4, 2, 0, 0, 2
Offset: 0

Views

Author

Vladimir Shevelev, Jun 02 2009

Keywords

Comments

a(n)=0 iff n is in A067076, i.e., 2n+3 is prime; a(n) is the number of positive integers of the form (n-3k)/(2k+1), 1<=k<=n/3.

Examples

			Since for n=3 we have 2n+3=9 and only nontrivial divisor of 9 is 3, then a(3)=1.
		

Crossrefs

Programs

Formula

For n>=1, a(n)=A160973(n)+A079978(n). [Vladimir Shevelev, Jun 07 2009]
a(n) = A070824(2n+3).

Extensions

Edited by Charles R Greathouse IV, Oct 12 2009
More terms from Michel Marcus, Feb 08 2016

A173177 Numbers k such that 2k+3 is a prime of the form 3*A034936(m) + 4.

Original entry on oeis.org

2, 5, 8, 14, 17, 20, 29, 32, 35, 38, 47, 50, 53, 62, 68, 74, 77, 80, 89, 95, 98, 104, 110, 113, 119, 134, 137, 140, 152, 155, 164, 167, 173, 182, 185, 188, 197, 203, 209, 215, 218, 227, 230, 242, 248, 260, 269, 272, 284, 287, 299
Offset: 1

Views

Author

Eric Desbiaux, Feb 11 2010

Keywords

Comments

With Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR
second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 2 + 3 OR 3* 1 + 4 = 7;
2* 5 + 3 OR 3* 3 + 4 = 13;
2* 8 + 3 OR 3* 5 + 4 = 19;
2*14 + 3 OR 3* 9 + 4 = 31;
2*17 + 3 OR 3*11 + 4 = 37;
2*20 + 3 OR 3*13 + 4 = 43;
2*29 + 3 OR 3*19 + 4 = 61;
2*32 + 3 OR 3*21 + 4 = 67;
2*35 + 3 OR 3*23 + 4 = 73.
A034936 Numbers k such that 3k+4 is prime.
A002476 Primes of the form 6k+1.
A024899 Nonnegative integers k such that 6k+1 is prime.
2, 5, 8, 14, 17, 20, ... = (3*(4*A024899 - A034936) - 5)/2.

Crossrefs

Programs

  • Mathematica
    Select[Range[300],PrimeQ[2#+3]&&Divisible[2#-1,3]&] (* Harvey P. Dale, Aug 25 2016 *)

Extensions

More terms from Harvey P. Dale, Aug 25 2016

A282194 a(n) = smallest positive k such that 2*n + 2^k + 1 is composite.

Original entry on oeis.org

3, 5, 2, 1, 4, 2, 1, 7, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 4, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 4, 2, 1, 4, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Altug Alkan, Feb 15 2017

Keywords

Comments

Least k such that a(k) = n are 3, 2, 0, 4, 1, 112, 7, 32917, 802, 9712, 1198673602 for the initial terms.

Examples

			a(1) = 5 because 3 + 2^k is prime for 0 < k < 5 and 3 + 2^5 = 35 is composite.
		

Crossrefs

Programs

  • Mathematica
    spk[n_]:=Module[{k=1},While[!CompositeQ[2n+2^k+1],k++];k]; Array[spk,110,0] (* Harvey P. Dale, Apr 26 2017 *)
  • PARI
    a(n) = my(k=1); while(isprime(2*n+2^k+1), k++); k;

A294064 Numbers k such that 2*k - 3, 2*k + 3, 3*k - 2, 3*k + 2 are primes.

Original entry on oeis.org

5, 7, 13, 35, 43, 55, 77, 127, 133, 155, 167, 253, 287, 295, 365, 475, 497, 533, 595, 713, 1007, 1177, 1483, 1805, 2323, 2575, 2723, 2927, 3107, 3415, 3487, 3823, 4145, 4213, 4367, 4565, 4717, 4927, 4963, 5125, 5215, 5363, 5417, 5587, 5627, 5795, 6133, 6587, 6797
Offset: 1

Views

Author

Dimitris Valianatos, Oct 22 2017

Keywords

Comments

The common numbers of A098090, A067076, A153183, A024893.
Conjecture: The Sum_{n>=1} 1/a(n) = 0.57... converges.
Note that the sum of the 4 primes that are obtained is 10 times the original term: (2*k - 3) + (2*k + 3) + (3*k - 2) + (3*k + 2) = 10*k.
From Robert G. Wilson v, Nov 19 2017: (Start)
Number of terms less than 10^m: 2, 7, 20, 55, 189, 919, 4863, 28218, 174469, ..., ;
Number of prime terms less than 10^m: 2, 4, 6, 12, 39, 140, 558, 2755, 14804, ..., .
All terms are == {5, 7, 13, 17, 23, 25} (mod 30).
(End)

Examples

			5 is in the sequence because 2*5-3 = 7, 2*5+3 = 13, 3*5-2 = 13, 3*5+2 = 17 and the tetrad [7, 13, 13, 17] are all prime numbers.
7 is in the sequence because 2*7-3 = 11, 2*7+3 = 17, 3*7-2 = 19, 3*7+2 = 23 and the tetrad [11, 17, 19, 23] are all prime numbers.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], Function[k, AllTrue[Flatten@ Map[#1 k + {-1, 1} #2 & @@ # &, {#, Reverse@ #}] &@ {2, 3}, PrimeQ]]] (* Michael De Vlieger, Oct 22 2017 *)
  • PARI
    {
    for(n=1,10000,
        if(isprime(2*n-3)&&isprime(2*n+3)&&isprime(3*n-2)&&isprime(3*n+2),
           print1(n", ")
          )
       )
    }

A337491 Numbers k such that exactly one of 2*k + 3 and 4*k + 3 is prime.

Original entry on oeis.org

8, 11, 13, 16, 22, 26, 28, 29, 31, 35, 37, 38, 41, 43, 44, 50, 53, 56, 59, 64, 65, 68, 70, 73, 74, 76, 80, 85, 86, 88, 91, 97, 98, 107, 109, 112, 113, 116, 118, 121, 122, 125, 127, 133, 134, 136, 137, 139, 142, 145, 146, 149, 151, 152, 155, 160, 161, 167, 170
Offset: 1

Views

Author

K. D. Bajpai, Aug 29 2020

Keywords

Comments

Integers that are in A067076 or in A095278, but not in both. - Michel Marcus, Aug 29 2020

Examples

			a(1) = 8 is a term because 2*8 + 3 = 19 is a prime; but 4*8 + 3 = 35 = (5*7) is a composite number.
a(4) = 16 is a term because 2*16 + 3 = 35 = (5*7) is a composite number; but 4*16 + 3 = 67  is a prime.
a(6) = 26 is a term because 2*26 + 3 = 55 = (5*11) is a composite number; but 4*26 + 3 = 107  is a prime.
		

Crossrefs

Programs

  • Maple
    A337491:=n->`if`((isprime(2*n+3) xor isprime(4*n+3)), n, NULL): seq(A337491(n), n=1..500);
  • Mathematica
    Select[Range[0, 250], Xor[PrimeQ[2 # + 3], PrimeQ[4 # + 3]] &]
    Select[Range[200],Total[Boole[PrimeQ[{2,4}#+3]]]==1&] (* Harvey P. Dale, Jan 26 2023 *)
  • PARI
    isok(k) = bitxor(isprime(2*k+3), isprime(4*k+3)); \\ Michel Marcus, Aug 29 2020
Previous Showing 51-60 of 64 results. Next