cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A325625 Sorted prime signature of 2^n - 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The sorted prime signature of n is row n of A124010.

Examples

			We have 2^126 - 1 = 3^3 * 7^2 * 19 * 43 * 73 * 127 * 337 * 5419 * 92737 * 649657 * 77158673929, so row n = 126 is {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3}.
Triangle begins:
  1
  1
  1
  1 1
  1
  1 2
  1
  1 1 1
  1 1
  1 1 1
  1 1
  1 1 1 2
  1
  1 1 1
  1 1 1
  1 1 1 1
  1
  1 1 1 3
  1
  1 1 1 1 2
		

Crossrefs

Programs

  • Mathematica
    Table[Sort[Last/@FactorInteger[2^n-1]],{n,30}]

A307540 Irregular triangle T(n,k) such that squarefree m with gpf(m) = prime(n) in each row are arranged according to increasing values of phi(m)/m.

Original entry on oeis.org

1, 2, 6, 3, 30, 10, 15, 5, 210, 42, 70, 14, 105, 21, 35, 7, 2310, 330, 462, 66, 770, 110, 154, 1155, 22, 165, 231, 33, 385, 55, 77, 11, 30030, 2730, 4290, 6006, 390, 546, 858, 10010, 78, 910, 1430, 2002, 130, 15015, 182, 286, 1365, 2145, 26, 3003, 195, 273, 429
Offset: 0

Views

Author

Michael De Vlieger, Apr 13 2019

Keywords

Comments

Let gpf(m) = A006530(m) and let phi(m) = A000010(m) for m in A005117.
Row n contains m in A005117 such that A000720(A006530(m)) = n, sorted such that phi(m)/m increases as k increases.
Let m be the squarefree kernel A007947(m') of m'. We only consider squarefree m since phi(m)/m = phi(m')/m'. Let prime p | n and prime q be a nondivisor of n.
Since m is squarefree, we might encode the multiplicities of its prime divisors in a positional notation M that is finite at n significant digits. For example, m = 42 can be encoded reverse(A067255(42)) = 1,0,1,1 = 7^1 * 5^0 * 3^1 * 2^1. It is necessary to reverse row m of A067255 (hereinafter simply A067255(m)) so as to preserve zeros in M = A067255(m) pertaining to small nondivisor primes q < p. The code M is a series of 0's and 1's since m is squarefree. Then it is clear that row n contains all m such that A067255(m) has n terms, and there are 2^(n - 1) possible terms for n >= 1.
We may use an approach that generates the binary expansion of the range 2^(n - 1) < M < 2^n - 1, or we may append 1 to the reversed (n - 1)-tuples of {1, 0} to achieve codes M -> m for each row n, which is tantamount to ordering according to A059894.
Originally it was thought that the codes M were in order of the latter algorithm, and we could avoid sorting. Observation shows that the m still require sorting by the function phi(m)/m indeed to be in increasing order in row n. Still, the latter approach is slightly more efficient than the former in generating the sequence.

Examples

			Triangle begins:
1;
2;
6, 3;
30, 10, 15, 5;
210, 42, 70, 14, 105, 21, 35, 7;
...
First terms of this sequence appear bottom to top in the chart below. The
values of n appear in the header, values m = T(n,k) followed
parenthetically by phi(m)/m appear in column n. The x axis plots
according to primepi(gpf(m)), while the y axis plots k according to
phi(m)/m:
    0       1          2             3             4
    .       .          .             .             .
--- 1 ------------------------------------------------
  (1/1)     .          .             .             .
    .       .          .             .             .
    .       .          .             .             .
    .       .          .             .             7
    .       .          .             5           (6/7)
    .       .          .           (4/5)           .
    .       .          .             .             .
    .       .          .             .            35
    .       .          3             .          (24/35)
    .       .        (2/3)           .             .
    .       .          .             .             .
    .       .          .             .             .
    .       .          .             .            21
    .       .          .             .           (4/7)
    .       .          .            15             .
    .       .          .          (8/15)           .
    .       2          .             .             .
    .     (1/2)        .             .             .
    .       .          .             .             .
    .       .          .             .            105
    .       .          .             .          (16/35)
    .       .          .             .            14
    .       .          .            10           (3/7)
    .       .          .           (2/5)           .
    .       .          .             .             .
    .       .          .             .            70
    .       .          6             .          (12/35)
    .       .        (1/3)           .             .
    .       .          .             .            42
    .       .          .            30           (2/7)
    .       .          .          (4/15)           .
    .       .          .             .            210
    .       .          .             .           (8/35)
...
		

Crossrefs

Programs

  • Mathematica
    Prepend[Array[SortBy[#, Last] &@ Map[{#1, #2, EulerPhi[#1]/#1} & @@ {Times @@  MapIndexed[Prime[First@ #2]^#1 &, Reverse@ #], FromDigits@ #} &, Map[Prepend[Reverse@ #, 1] &, Tuples[{1, 0}, # - 1]]] &, 6], {{1, 0, 1}}][[All, All, 1]] // Flatten

Formula

For n > 0, row lengths = A000079(n - 1).
T(n, 1) = A002110(n) = p_n#.
T(n, 2) = A306237(n) = p_n#/prime(n - 1).
T(n, 2^(n - 1) - 1) = A006094(n).
T(n, 2^(n - 1)) = A000040(n) = prime(n) for n >= 1.
Last even term in row n = A077017(n).
First odd term in row n = A070826(n).

A325613 Full q-signature of n. Irregular triangle read by rows where T(n,k) is the multiplicity of q(k) in the q-factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 3, 1, 2, 1, 0, 0, 0, 1, 3, 0, 0, 1, 2, 2, 1, 4, 2, 0, 0, 1, 0, 0, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 3, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 4, 1, 2, 2, 2, 3, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Every positive integer has a unique q-factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
Also the number of terminal subtrees with Matula-Goebel number k of the rooted tree with Matula-Goebel number n.

Examples

			Triangle begins:
  {}
  1
  1 1
  2
  1 1 1
  2 1
  2 0 0 1
  3
  2 2
  2 1 1
  1 1 1 0 1
  3 1
  2 1 0 0 0 1
  3 0 0 1
  2 2 1
  4
  2 0 0 1 0 0 1
  3 2
  3 0 0 0 0 0 0 1
  3 1 1
		

Crossrefs

Row lengths are A061395.
Row sums are A196050.
Row-maxima are A109129.
The number whose full prime signature is the n-th row is A324922(n).
Cf. A067255.
Matula-Goebel numbers: A007097, A061775, A109082, A317713.
q-factorization: A324923, A324924, A325613, A325614, A325615, A325660.

Programs

  • Mathematica
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    qsig[n_]:=If[n==1,{},With[{ms=difac[n]},Table[Count[ms,i],{i,Max@@ms}]]];
    Table[qsig[n],{n,30}]

A332423 If n = Product (p_j^k_j) then a(n) = Sum ((-1)^(k_j + 1) * k_j).

Original entry on oeis.org

0, 1, 1, -2, 1, 2, 1, 3, -2, 2, 1, -1, 1, 2, 2, -4, 1, -1, 1, -1, 2, 2, 1, 4, -2, 2, 3, -1, 1, 3, 1, 5, 2, 2, 2, -4, 1, 2, 2, 4, 1, 3, 1, -1, -1, 2, 1, -3, -2, -1, 2, -1, 1, 4, 2, 4, 2, 2, 1, 0, 1, 2, -1, -6, 2, 3, 1, -1, 2, 3, 1, 1, 1, 2, -1, -1, 2, 3, 1, -3
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 12 2020

Keywords

Comments

Sum of odd exponents in prime factorization of n minus the sum of even exponents in prime factorization of n.

Examples

			a(2700) = a(2^2 * 3^3 * 5^2) = -2 + 3 - 2 = -1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ ((-1)^(#[[2]] + 1) #[[2]] & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 1, 80}]
  • PARI
    a(n) = vecsum(apply(x -> (-1)^(x+1) * x, factor(n)[, 2])); \\ Amiram Eldar, Oct 09 2023

Formula

From Amiram Eldar, Oct 09 2023: (Start)
Additive with a(p^e) = (-1)^(e+1) * e.
a(n) = A350387(n) - A350386(n).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = Sum_{p prime} (3*p+1)/(p*(p+1)^2) = 0.81918453457738985491 ... . (End)

A333624 Irregular triangle read by rows: T(n,k) = number of triangles of zeros with side length k in the XOR-triangle with first row generated from the binary expansion of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 0, 1, 0, 0, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 3, 1, 1, 2, 1, 2, 2, 0, 1, 5, 3, 1, 2, 0, 1, 1, 2, 3, 1, 5, 1, 2, 3, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 3, 0, 1, 3, 2, 3, 2, 2, 1, 1, 0, 3
Offset: 1

Views

Author

Michael De Vlieger, May 08 2020

Keywords

Comments

An XOR-triangle is an inverted 0-1 triangle formed by choosing a top row and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(n) applied recursively until we reach a single bit.
Let b(n) = n written in binary and let L(n) = 1 + floor(log_2(n)) = A070939(n). Let => be a single iteration of XOR across pairs of bits in b(n). Let t(n) be the XOR triangle initiated by b(n). Thus we may refer to any bit in t(n) by the address S(i,j) with 1 <= i <= L(n) and 1 <= j <= L(n) - j + 1.
We detect triangles of zeros, which are "voids" amid surrounding 1's or undefined "space" in the t(n) via run lengths of -1 in S(i,j) - S(i-1,j) for i > 1, and for i = 1, run lengths of zeros.
A334591(n) = length of row n.
From Michael De Vlieger, May 27 2020: (Start)
We can compactify row n by taking the product of prime(k)^T(n,k) for 1 <= k <= A334591(n), decoding the compactified row using A067255. This way, we can compactify the populations of zero-triangles for large n. Example: for n = 151, t(151) has 3 singleton zeros and 4 zero-triangles of side length k = 2. Thus row 151 has {3, 4}. 2^3 * 3^4 = 8 * 81 = 648. A067255(648) = {3, 4}.
A333625(m) = Product(prime(k)^T(m,k)) for m in A334556 (rotationally symmetrical XOR-triangles).
A334896(m) = Product(prime(k)^T(m,k)) for m in A334769 (rotationally symmetrical XOR-triangles with central zero-triangles).
(End)

Examples

			Table begins:
0;
1;
1;
0, 1;
2;
2;
0, 1;
0, 0, 1;
1, 1;
2, 1;
3;
2, 1;
3;
1, 1;
0, 0, 1;
0, 0, 0, 1;
1, 0, 1;
3, 1;
1, 2;
1, 2;
2, 0, 1;
...
Let b(n) = n written in binary. Let => be a single iteration of XOR across pairs of bits in b(n). Let t(n) be the XOR triangle initiated by b(n).
Row 1 contains {0}, since b(1) = 1. Since the XOR triangle that results from a single 1-bit merely consists of that bit and since there are no zeros in the triangle t(1), we write the single term zero in this row.
Row 5 = {2} since b(5) = 101 => 11 => 0. Here we have 2 lone zeros, thus {2}.
Row 12 = {2, 1} since b(12) = 1100 => 010 => 11 => 0. We have 2 isolated zeros and 1 triangle of zeros with side length 2, thus {2, 1}.
		

Crossrefs

Programs

  • Mathematica
    Array[Function[w, If[Length@ # == 0, {0}, ReplacePart[ConstantArray[0, Max@ #[[All, 1]]], Map[#1 -> #2 & @@ # &, #]]] /. -Infinity -> 0 &@ Tally@ Flatten@ Array[If[# == 1, Map[If[First@ # == 1, Nothing, Length@ #] &, Split@ w[[#]] ], Map[If[First@ # == -1, Length@ #, Nothing] &, Split[w[[#]] - Most@ w[[# - 1]] ] ]] &, Length@ w]]@ NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &] &, 39] // Flatten

A334572 Let x(n, k) be the exponent of prime(k) in the factorization of n, then a(n) = Max_{k} abs(x(n,k)- x(n-1,k)).

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 1, 1, 4, 4, 2, 2, 2, 2, 1, 1, 3, 3, 2, 3, 3, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 1, 4, 4, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 2, 1, 2, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 4, 4, 4, 1, 2, 2, 1, 1, 3, 3, 2
Offset: 2

Views

Author

Michel Marcus, May 06 2020

Keywords

Comments

a(n) = d_infinite(n, n-1) as defined in Kolossváry & Kolossváry link.

Examples

			The "coordinates" of the prime factorization are
  0,0,0,0, ... for n=1,
  1,0,0,0, ... for n=2,
  0,1,0,0, ... for n=3,
  2,0,0,0, ... for n=4,
  0,0,1,0, ... for n=5,
  1,1,0,0, ... for n=6;
so the absolute differences are
  1,0,0,0, ... so a(2)=1,
  1,1,0,0, ... so a(3)=1,
  2,1,0,0, ... so a(4)=2,
  2,0,1,0, ... so a(5)=2,
  1,1,1,0, ... so a(6)=1.
		

Crossrefs

Programs

  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    a:= n-> max(map(abs, {coeffs(f(n)-f(n-1))})):
    seq(a(n), n=2..120);  # Alois P. Heinz, May 06 2020
  • Mathematica
    Block[{f}, f[n_] := If[n == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ n]; Array[Function[{a, b, m}, Max@ Abs[Subtract @@ #] &@ Map[PadRight[#, m] &, {a, b}]] @@ {#1, #2, Max@ Map[Length, {#1, #2}]} & @@ {f[# - 1], f@ #} &, 106, 2]] (* Michael De Vlieger, May 06 2020 *)
    (* Second program: *)
    f[n_] := Sum[{p, e} = pe; e x^p, {pe, FactorInteger[n]}];
    a[n_] := CoefficientList[f[n]-f[n-1], x] // Abs // Max;
    a /@ Range[2, 90] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
    Max @@@ Partition[Join[{0}, Table[Max[FactorInteger[n][[;; , 2]]], {n, 2, 100}]], 2, 1] (* Amiram Eldar, Jan 05 2024 *)
  • PARI
    a(n) = {my(f=factor(n/(n-1))[,2]~); vecmax(apply(x->abs(x), f));}
    
  • PARI
    A051903(n)=vecmax(factor(n)[, 2])
    a(n)=if(n<4, return(1)); max(A051903(n-1),A051903(n)) \\ Charles R Greathouse IV, Jan 30 2022

Formula

a(n) = max(A051903(n-1), A051903(n)). - Pontus von Brömssen, May 07 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=2..m} a(k) = 2.2883695... (A334574). - Amiram Eldar, Jan 05 2024
a(n) = A051903(A002378(n-1)). - Amiram Eldar, Mar 28 2025

A360589 Numbers k that set records in A355432.

Original entry on oeis.org

1, 18, 48, 54, 162, 384, 486, 1350, 1458, 2250, 2430, 3750, 6000, 6750, 7290, 11250, 12150, 14580, 15000, 15360, 18750, 21870, 30720, 33750, 36450, 37500, 43740, 56250, 61440, 65610, 93750, 122880, 168750, 182250, 187500, 196830, 245760, 281250, 328050, 360150, 375000, 393660
Offset: 1

Views

Author

Michael De Vlieger, Feb 22 2023

Keywords

Comments

Subset of A055932.
For n > 1, subset of A360768, which is in turn a subset of A126706.
Conjecture: for n > 2, subset of A364702. - Michael De Vlieger, Oct 04 2024

Examples

			Let rad(m) = A007947(m).
a(1) = 1 since 1 is the empty product.
a(2) = 18 since {12} is a nondivisor k < 18 such that rad(k) = rad(18).
a(3) = 48 since {18, 36} are nondivisors k < 48 such that rad(k) = rad(48).
a(4) = 54 since {12, 24, 36, 48} are nondivisors k < 54 such that rad(k) = rad(54), etc.
Table shows prime decomposition of a(n) = Product p^e, noting multiplicity e in the pi(p)-th position. For example, a(n) = 1350 = 2 * 3^3 * 5^2, hence we write 1.3.2.
a(n) = A055932(i) and has A360912(n) nondivisors k < a(n) such that rad(k) = rad(a(n)).
   n    a(n) A067255(a(n))  i  A360912(n)
  ----------------------------------------
   1      1      0          1          0
   2     18      1.2        8          1
   3     48      4.1       13          2
   4     54      1.3       14          4
   5    162      1.4       25          8
   6    384      7.1       37         10
   7    486      1.5       42         14
   8   1350      1.3.2     65         16
   9   1458      1.6       67         21
  10   2250      1.2.3     81         23
  11   2430      1.5.1     85         26
  12   3750      1.1.4     99         33
  ...
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; t = Select[Range[2^14], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; s = Select[t, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; t = Table[m = s[[n]]; r = rad[m]; Count[TakeWhile[t, # < m &], _?(And[rad[#] == r, Mod[m, #] != 0] &)], {n, Length[s]}]; {1}~Join~Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]

A082786 Triangle, read by rows, of exponents of primes in canonical prime factorization of n: T(n,k) = greatest number such that prime(k)^T(n,k) divides n, 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 22 2003

Keywords

Comments

n = Product_{k=1..n} prime(k)^T(n,k);
T(n, A055396(n)) > 0 and T(n,k) = 0 for 1 <= k < A055396(n);
T(n, A061395(n)) > 0 and T(n,k) = 0 for A061395(n) < k <= n;
Sum_{k=1..n} T(n,k) = A001222(n);
Sum_{k=1..n} A057427(T(n,k)) = A001221(n);
Sum_{k=1..n} T(n,k)*prime(k) = A001414(n);
Sum_{k=1..n} A057427(T(n,k))*prime(k) = A008472(n);
Min(T(n,k): 1<=k<=n) = A051904(n);
Max(T(n,k): 1<=k<=n) = A051903(n);
T(n,1) = A007814(n); T(n,2) = A007949(n), n>1.

Examples

			Triangle begins:
  0,
  1, 0,
  0, 1, 0,
  2, 0, 0, 0,
  0, 0, 1, 0, 0,
  1, 1, 0, 0, 0, 0,
  0, 0, 0, 1, 0, 0, 0,
  3, 0, 0, 0, 0, 0, 0, 0,
  ...
		

Crossrefs

Cf. A067255 (same as irregular triangle).

Programs

  • Mathematica
    Table[IntegerExponent[n, Prime[k]], {n,1,15}, {k,1,n}] // Flatten  (* Amiram Eldar, Dec 14 2018 *)
  • PARI
    row(n) = vector(n, k, valuation(n, prime(k)));
    tabl(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Dec 14 2018

A167219 Numbers k such that there exists a positive integer B for which k = Sum_{i=0..m} (B^i)*a_i where the a_i are defined by k = Product_{i=0..m} prime(i+1)^a_i.

Original entry on oeis.org

3, 6, 10, 12, 24, 27, 36, 48, 96, 100, 144, 175, 192, 216, 273, 384, 486, 576, 768, 972, 1296, 1536, 1728, 2304, 3072, 3125, 6144, 9216, 12288, 13824, 17496, 19683, 20736, 24576, 36864, 46656, 49152, 62208, 69984, 98304, 110592, 147456, 196608, 331776, 393216, 589824
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 30 2009

Keywords

Comments

Previous name: Numbers k such that there exists a solution to (p_m ^ a_m)*(p_m-1 ^ a_m-1)*...*(3^a_1)*(2^a_0) = (B^m)*a_m + (B^m-1)*a_m-1 + ... + (B^1)*a_1 + (B^0)*a_0 where k = (p_m ^ a_m)*(p_m-1 ^ a_m-1)*...*(3^a_1)*(2^a_0); a_m >= 1; a_(i= 0; p_0, p_1, ..., p_m are prime numbers; a_0, a_1, ..., a_m, B are integers.
B is the base in which we can express k as Sum_{i=0..m} B^i * a_i. B may also be seen as the variable in a polynomial, and k is then also an encoding of the polynomial (defined by the product of primes formula).
For k = (2^r)*3 we have B = (2^r)*3 - r.
A167221(n) is the smallest positive integer that yields a solution for k = a(n).
Negative B's can be obtained when the polynomial is an even function. This happens for instance when for k = 10, 100, 3125, ... - Michel Marcus, Aug 10 2022
From Peter Munn, Aug 13 2022: (Start)
Positive integers k such that k is a fixed point of a completely additive function f_B:N+ -> Z, B > 0, where f_B(prime(i+1)) = B^i for all i >= 0. Equivalently, since row B of A104244 is f_B, {a(n)} lists the columns of A104244 that contain their own column number.
If we require B to be negative instead, the sequence appears to start 10, 100, 3125, 1799875, 65610000, ... . Of these, 1799875 = 5^3 * 7 * 11^2 * 17 is the only k with only negative solutions (B = -11); the solutions for 65610000 are {4049, -4051}.
(End)
If p is the (k+1)-th prime and p is congruent to 1 modulo k, then p^p is a term with p^((p-1)/k) a solution for B. The list of such primes starts 3, 5, 7, 31, 97, 101, 331, ... . I suspect this list is infinite, meaning the greatest prime factor of the terms would be unbounded. - Peter Munn, Aug 15 2022

Examples

			For k = 10 = 2^1 * 3^0 * 5^1, k = B^0 * 1 + B^1 * 0 + B^2 * 1, so we have to solve the equation 10 = 1 + B^2 for a positive integer B, B = 3. But B=-3 works too. Thus 10 is a term.
For k = 12 = 2^2 * 3^1, k = B^0 * 2 + B^1 * 1, so we have to solve the equation 12 = 2 + B for a positive integer B. B = 10. Thus 12 is a term.
For k = 21 = 2^0 * 3^1 * 5^0 * 7^1, k = B^0 * 0 + B^1 * 1 + B^2 * 0 + B^3 * 1, so we have to solve the equation 21 = B + B^3 for an integer B. No such B exists, so 21 is not a term of this sequence.
From _Michel Marcus_, Aug 10 2022: (Start)
In other words:
  10 is a term because 10 = 5^1 * 3^0 * 2^1 and 101 in base 3 is 10.
  12 is a term because 12 = 3^1 * 2^2 and 12 in base 10 is 12. (End)
		

Crossrefs

A206284 describes the polynomial encoding used here.

Programs

  • PARI
    isok(k) = if (k>1, my(f=factor(k), v=primes(primepi(vecmax(f[,1])))); my(p=sum(i=1, #v, 'x^(i-1)*valuation(k,v[i]))); p -= k; my(c=-polcoef(p, 0)); my(q=(p+c)/x); my(d=divisors(c)); for (k=1, #d, if(subst(q, x, d[k]) == c/d[k], return(1)););); \\ Michel Marcus, Aug 08 2022
    
  • PARI
    \\ See PARI link \\ David A. Corneth, Aug 10 2022
    
  • Python
    from sympy import divisors, factorint, sieve
    def ok(n):
        if n < 2: return False
        f = factorint(n)
        a = [f[pi] if pi in f else 0 for pi in sieve.primerange(2, max(f)+1)]
        for B in range(1, n+1):
            polyB = sum(B**i*ai for i, ai in enumerate(a) if ai > 0)
            if polyB == n: return True
            elif polyB > n: return False
        return False
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Aug 10 2022

Extensions

Edited by Jon E. Schoenfield, Mar 16 2022
Incorrect term 71 removed, new name and more terms from Michel Marcus, Aug 08 2022
a(41)-a(46) from Michael S. Branicky, Aug 10 2022

A226532 If n = Product_{i>0} prime(i)^e(i), then a(n) = Product_{i>0} prime(i)^(XOR_{j>=i} e(j)), where XOR is bitwise XOR.

Original entry on oeis.org

1, 2, 6, 4, 30, 3, 210, 8, 36, 15, 2310, 24, 30030, 105, 5, 16, 510510, 72, 9699690, 120, 35, 1155, 223092870, 12, 900, 15015, 216, 840, 6469693230, 10, 200560490130, 32, 385, 255255, 7, 9, 7420738134810, 4849845, 5005, 60, 304250263527210, 70, 13082761331670030, 9240, 1080, 111546435, 614889782588491410
Offset: 1

Views

Author

Paul Tek, Jun 10 2013

Keywords

Comments

This sequence is a permutation of the natural numbers.
The powers of 2 are the fixed points of this sequence.
a(prime(i)) = A002110(i) for any i > 0.
a(i^2) = a(i)^2 for any i > 0.
a(A019565(n)) = A019565(A006068(n)) for any n >= 0.

Examples

			a(50) = a(2^1 * 3^0 * 5^2)
      = 2^xor(1,0,2) * 3^xor(0,2) * 5^xor(2)
      = 2^3          * 3^2        * 5^2
      = 1800.
		

Crossrefs

Cf. A006068.
Cf. A226569 (inverse), A067255, A000040.

Programs

  • Haskell
    import Data.Bits (xor)
    a226532 n = product $ zipWith (^)
                a000040_list (scanr1 xor $ a067255_row n :: [Integer])
    -- Reinhard Zumkeller, Jun 11 2013
  • Perl
    # See Tek link.
    
Previous Showing 11-20 of 54 results. Next