A333432
A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 3, 2, 5, 2, 7, 2, ...
3, 0, 4, 9, 4, 25, 3, 49, 4, ...
4, 0, 8, 21, 6, 125, 4, 343, 8, ...
5, 0, 16, 27, 8, 625, 6, 889, 10, ...
6, 0, 20, 63, 12, 1555, 8, 2359, 16, ...
7, 0, 32, 81, 16, 3125, 9, 2401, 20, ...
8, 0, 40, 147, 18, 7775, 12, 6223, 32, ...
9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Columns k=1-20 give:
A000027,
A063524,
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A333506,
A128360.
-
A:= proc() local h, p; p:= proc() [1] end;
proc(n, k) if k=2 then `if`(n=1, 1, 0) else
while nops(p(k)) 1 do od;
p(k):= [p(k)[], h]
od; p(k)[n] fi
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020
-
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
A014959
Integers k such that k divides 22^k - 1.
Original entry on oeis.org
1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014960 (b=24).
-
nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)
A115976
Numbers k that divide 2^(k-2) + 1.
Original entry on oeis.org
1, 3, 49737, 717027, 9723611, 21335267, 32390921, 38999627, 43091897, 86071337, 101848553, 102361457, 228911411, 302948067, 370219467, 393664027, 455781089, 483464027, 1040406177, 1272206987, 2371678553, 2571052241, 2648052857, 3054713937, 3597613307, 3782971499, 3917903851, 4005163577, 5419912241
Offset: 1
Cf.
A006521,
A006517,
A069927,
A067945,
A067946,
A067947,
A068382,
A068383,
A014945,
A014946,
A014949,
A092028.
-
lst = {}; Do[ If[ PowerMod[2, 2n - 3, 2n - 1] == 2n - 2, AppendTo[lst, 2n - 1]], {n, 10^9}]; lst (* Robert G. Wilson v, Apr 04 2006 *)
A242865
Numbers n such that 3^(n - 3) is congruent to 1 modulo n.
Original entry on oeis.org
3, 9299, 31903, 50963, 87043, 115918, 116891, 219827, 241043, 394243, 550243, 617503, 760243, 806623, 1029253, 1050787, 1458083, 1642798, 1899458, 2864755, 3205387, 3588115, 3839363, 4164578, 5041223, 5610583, 5834755, 5977555, 7837903, 8005558, 8067433, 8128823, 9007603, 9298903, 9449113, 9617443, 9835843
Offset: 1
-
Select[Range[10^4], Mod[3^(# - 3), #] == 1 &] (* Alonso del Arte, May 27 2014 *)
-
for(n=3, 10^6, if(Mod(3, n)^(n-3)==1, print1(n, ", ")))
A277628
Positive integers n such that 3^n == 6 (mod n).
Original entry on oeis.org
1, 3, 21, 936340943, 10460353197, 9374251222371, 23326283250291, 615790788171551
Offset: 1
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2),
A276740 (k=5), this sequence (k=6),
A277126 (k=7),
A277630 (k=8),
A277274 (k=11).
A277630
Positive integers n such that 3^n == 8 (mod n).
Original entry on oeis.org
1, 5, 2352527, 193841707, 17126009179703, 380211619942943
Offset: 1
Solutions to 3^n == k (mod n):
A277340 (k=-11),
A277289 (k=-7),
A277288 (k=-5),
A015973 (k=-2),
A015949 (k=-1),
A067945 (k=1),
A276671 (k=2),
A276740 (k=5),
A277628 (k=6),
A277126 (k=7), this sequence (k=8),
A277274 (k=11).
A093547
Numbers k such that k divides 3^(k^2) - 1.
Original entry on oeis.org
1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 68, 80, 100, 110, 128, 136, 160, 164, 200, 220, 250, 256, 272, 320, 328, 340, 400, 440, 500, 512, 544, 550, 610, 640, 656, 680, 772, 800, 820, 880, 1000, 1010, 1024, 1088, 1100, 1156, 1210, 1220, 1250, 1280, 1312, 1360
Offset: 1
-
v={};Do[If[IntegerQ[(3^n^2-1)/n], v=Append[v, n];Print[v]], {n, 2500}]
Select[Range[1400],Divisible[3^#^2-1,#]&] (* Harvey P. Dale, Nov 04 2015 *)
-
isok(k) = Mod(3, k)^(k^2) == 1; \\ Amiram Eldar, May 26 2024
Comments