cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,  1,     1,  1,     1,  1, ...
  2, 0,  2,   3,  2,     5,  2,     7,  2, ...
  3, 0,  4,   9,  4,    25,  3,    49,  4, ...
  4, 0,  8,  21,  6,   125,  4,   343,  8, ...
  5, 0, 16,  27,  8,   625,  6,   889, 10, ...
  6, 0, 20,  63, 12,  1555,  8,  2359, 16, ...
  7, 0, 32,  81, 16,  3125,  9,  2401, 20, ...
  8, 0, 40, 147, 18,  7775, 12,  6223, 32, ...
  9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
		

Crossrefs

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=2 then `if`(n=1, 1, 0) else
            while nops(p(k)) 1 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
    Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

A014959 Integers k such that k divides 22^k - 1.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*22^(k-1) (cf. A014940).

Crossrefs

Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014960 (b=24).

Programs

  • Mathematica
    nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)

Extensions

Edited by Max Alekseyev, Nov 16 2019

A115976 Numbers k that divide 2^(k-2) + 1.

Original entry on oeis.org

1, 3, 49737, 717027, 9723611, 21335267, 32390921, 38999627, 43091897, 86071337, 101848553, 102361457, 228911411, 302948067, 370219467, 393664027, 455781089, 483464027, 1040406177, 1272206987, 2371678553, 2571052241, 2648052857, 3054713937, 3597613307, 3782971499, 3917903851, 4005163577, 5419912241
Offset: 1

Views

Author

Max Alekseyev, Mar 15 2006

Keywords

Comments

Some larger terms: 4465786944074559659, 1440261542571735083956640176981881665928575750093930787551969

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[ If[ PowerMod[2, 2n - 3, 2n - 1] == 2n - 2, AppendTo[lst, 2n - 1]], {n, 10^9}]; lst (* Robert G. Wilson v, Apr 04 2006 *)

Extensions

More terms from Robert G. Wilson v, Apr 04 2006
Terms a(24) onward from Max Alekseyev, Feb 03 2015
b-file corrected and extended by Max Alekseyev, Oct 27 2018

A242865 Numbers n such that 3^(n - 3) is congruent to 1 modulo n.

Original entry on oeis.org

3, 9299, 31903, 50963, 87043, 115918, 116891, 219827, 241043, 394243, 550243, 617503, 760243, 806623, 1029253, 1050787, 1458083, 1642798, 1899458, 2864755, 3205387, 3588115, 3839363, 4164578, 5041223, 5610583, 5834755, 5977555, 7837903, 8005558, 8067433, 8128823, 9007603, 9298903, 9449113, 9617443, 9835843
Offset: 1

Views

Author

Felix Fröhlich, May 24 2014

Keywords

Crossrefs

Intersection with A033553 gives A277344.

Programs

  • Mathematica
    Select[Range[10^4], Mod[3^(# - 3), #] == 1 &] (* Alonso del Arte, May 27 2014 *)
  • PARI
    for(n=3, 10^6, if(Mod(3, n)^(n-3)==1, print1(n, ", ")))

A277628 Positive integers n such that 3^n == 6 (mod n).

Original entry on oeis.org

1, 3, 21, 936340943, 10460353197, 9374251222371, 23326283250291, 615790788171551
Offset: 1

Views

Author

Dmitry Ezhov, Oct 24 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Sep 12 2017

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), this sequence (k=6), A277126 (k=7), A277630 (k=8), A277274 (k=11).

Programs

  • PARI
    isok(n) = Mod(3, n)^n == Mod(6, n);

Extensions

a(6)-a(8) from Max Alekseyev, Sep 12 2017

A277630 Positive integers n such that 3^n == 8 (mod n).

Original entry on oeis.org

1, 5, 2352527, 193841707, 17126009179703, 380211619942943
Offset: 1

Views

Author

Dmitry Ezhov, Oct 24 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Sep 13 2017

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277628 (k=6), A277126 (k=7), this sequence (k=8), A277274 (k=11).

Programs

  • PARI
    isok(n) = Mod(3, n)^n == Mod(8, n);

Extensions

a(5)-a(6) established by Max Alekseyev, Sep 13 2017

A093547 Numbers k such that k divides 3^(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 68, 80, 100, 110, 128, 136, 160, 164, 200, 220, 250, 256, 272, 320, 328, 340, 400, 440, 500, 512, 544, 550, 610, 640, 656, 680, 772, 800, 820, 880, 1000, 1010, 1024, 1088, 1100, 1156, 1210, 1220, 1250, 1280, 1312, 1360
Offset: 1

Views

Author

Farideh Firoozbakht, Mar 31 2004

Keywords

Comments

This sequence is closed under multiplication, i.e., if x and y are terms then so is x*y.
A067945 is a subsequence of this sequence. A067945 is also closed under multiplication. In fact if m is an integer and k is a natural number then the sequence " n divides m^(n^k) - 1 " is a subsequence of the sequence " n divides m^n^(k+1)- 1 " and both are closed under multiplication.

Crossrefs

Programs

  • Mathematica
    v={};Do[If[IntegerQ[(3^n^2-1)/n], v=Append[v, n];Print[v]], {n, 2500}]
    Select[Range[1400],Divisible[3^#^2-1,#]&] (* Harvey P. Dale, Nov 04 2015 *)
  • PARI
    isok(k) = Mod(3, k)^(k^2) == 1; \\ Amiram Eldar, May 26 2024
Previous Showing 21-27 of 27 results.