cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A132241 Twin primes congruent to {11, 13} mod 30.

Original entry on oeis.org

11, 13, 41, 43, 71, 73, 101, 103, 191, 193, 281, 283, 311, 313, 431, 433, 461, 463, 521, 523, 641, 643, 821, 823, 881, 883, 1031, 1033, 1061, 1063, 1091, 1093, 1151, 1153, 1301, 1303, 1451, 1453, 1481, 1483, 1721, 1723, 1871, 1873
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a[0]=1;a[n_]:=a[n]=a[n-1]+10;Flatten[Table[If[PrimeQ[a[n]]&&PrimeQ[a[n]+2],{a[n],a[n]+2},{}],{n,0,200}]] (* Vincenzo Librandi, Aug 15 2012 *)

A167057 Numbers k such that 12*k + 11 is prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 10, 13, 14, 15, 18, 19, 20, 21, 25, 28, 29, 31, 34, 35, 36, 38, 39, 40, 41, 46, 48, 49, 53, 54, 56, 59, 61, 68, 69, 71, 73, 75, 78, 80, 81, 84, 85, 90, 91, 95, 96, 98, 101, 104, 106, 108, 109, 113, 118, 119, 120, 123, 124, 125, 126, 129, 130, 131, 133
Offset: 1

Views

Author

Michael B. Porter, Oct 27 2009

Keywords

Comments

Corresponds to even numbers in A024898.

Examples

			3 is in the sequence since 12*3+11 = 47 is prime.
		

Crossrefs

Cf. A110801, A167055, A167056, A024898, primes are in A068231.

Programs

  • Magma
    [n: n in [0..200] |IsPrime(12*n+11)]; // Vincenzo Librandi, Mar 25 2010
  • Mathematica
    Select[Range[0, 200], PrimeQ[12 # + 11] &] (* Vincenzo Librandi, May 20 2014 *)
  • PARI
    isA167057(n) = isprime(12*n+11)
    

Formula

a(n) = A138620(n)-1. [From R. J. Mathar, Oct 29 2009]

A014557 Multiplicity of K_3 in K_n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40, 52, 70, 88, 112, 136, 168, 200, 240, 280, 330, 380, 440, 500, 572, 644, 728, 812, 910, 1008, 1120, 1232, 1360, 1488, 1632, 1776, 1938, 2100, 2280, 2460, 2660, 2860, 3080, 3300, 3542, 3784, 4048, 4312, 4600, 4888, 5200
Offset: 0

Views

Author

Keywords

Comments

The multiplicity of triangles in K_n is defined to be the minimum number of monochromatic copies of K_3 that occur in any 2-coloring of the edges of K_n. - Allan Bickle, Mar 04 2023
Twice A008804 (up to offset).
From Alexander Adamchuk, Nov 29 2006: (Start)
n divides a(n) for n = {1,2,3,4,5,8,10,13,14,16,17,20,22,25,26,28,29,32,34,37,38,40,41,44,46,49,50,52,53,56,58,61,62,64,65,68,70,73,74,76,77,80,82,85,86,88,89,92,94,97,98,100,...}.
Prime p divides a(p) for p = {2,3,5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193,197,...} = (2,3) and all primes from A002144: Pythagorean primes: primes of form 4n+1.
(n+1) divides a(n) for n = {1,2,3,4,5,19,27,43,51,67,75,91,99,...}.
(p+1) divides a(p) for prime p = {2,3,5,19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,643,691,739,787,811,859,883,907,...} = {2,5} and all primes from A141373: Primes of the form 3x^2+16y^2.
(n-1) divides a(n) for n = {2,3,4,5,21,29,45,53,69,77,93,101,...}.
(p-1) divides a(p) for prime p = {2,3,5,29,53,101,149,173,197,269,293,317,389,461,509,557,653,677,701,773,797,821,941,..} = {2,3} and all primes from A107003: Primes of the form 5x^2+2xy+5y^2, with x and y any integer.
(n-2) divides a(n) for n = {3,4,5,12,16,24,28,36,40,48,52,60,64,72,76,84,88,96,100,...} = {3,5} and 4*A032766: Numbers congruent to 0 or 1 mod 3.
(n+3) divides a(n) for n = {1,2,3,4,5,9,11,18,32,39}.
(n-3) divides a(n) for n = {4,5,7,9,23,31,47,55,71,79,95,103,119,127,143,151,167,175,...}.
(p+3) divides a(p) for prime p = {5,7,23,31,47,71,79,103,127,151,167,191,199,...} = {5} and all primes from A007522: Primes of form 8n+7.
(n-4) divides a(n) for n = {5,6,8,11,12,14,15,18,20,23,24,26,27,30,32,35,36,38,39,42,44,47,48,50,...}.
(p-4) divides a(p) for prime p = {5,11,23,47,59,71,83,107,131,167,179,191,...} = {5} and all primes from A068231: Primes congruent to 11 (mod 12).
(n+5) divides a(n) for n = {1,2,3,4,5,30,31,45,58,145}.
(n-5) divides a(n) for n = {6,7,9,10,20,25,33,49,57,73,81,97,105,...}.
(p-5) divides a(p) for prime p = {7,73,97,193,241,313,337,409,433,457,577,601,673,769,937,...} = {7} and all primes from A107008: Primes of the form x^2+24y^2. (End)

Examples

			Any 2-coloring of the edges of K_6 produces at least two monochromatic triangles.  Having colors induce K_3,3 and 2K_3 shows this is attained, so a(6) = 2.
		

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n-2)/6 - Floor((n/2)*Floor(((n-1)/2)^2)): n in [1..20]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A049322 := proc(n) local u; if n mod 2 = 0 then u := n/2; RETURN(u*(u-1)*(u-2)/3); elif n mod 4 = 1 then u := (n-1)/4; RETURN(u*(u-1)*(4*u+1)*2/3); else u := (n-3)/4; RETURN(u*(u+1)*(4*u-1)*2/3); fi; end;
  • Mathematica
    Table[Binomial[n,3] - Floor[n/2*Floor[((n-1)/2)^2]],{n,0,100}] (* Alexander Adamchuk, Nov 29 2006 *)
  • PARI
    x='x+O('x^99); concat(vector(6), Vec(2*x^6/((x-1)^4*(x+1)^2*(x^2+1)))) \\ Altug Alkan, Apr 08 2016
    

Formula

a(n) = binomial(n,3) - floor(n/2 * floor(((n-1)/2)^2)). - Alexander Adamchuk, Nov 29 2006
G.f.: 2*x^6/((x-1)^4*(x+1)^2*(x^2+1)). - Colin Barker, Nov 28 2012
E.g.f.: ((x - 3)*x^2*cosh(x) - 6*sin(x) + (6 + 3*x - 3*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, May 15 2023

Extensions

Entry revised by N. J. A. Sloane, Mar 22 2004

A132238 Primes congruent to {11, 13} mod 30.

Original entry on oeis.org

11, 13, 41, 43, 71, 73, 101, 103, 131, 163, 191, 193, 223, 251, 281, 283, 311, 313, 373, 401, 431, 433, 461, 463, 491, 521, 523, 613, 641, 643, 673, 701, 733, 761, 821, 823, 853, 881, 883, 911, 941, 971, 1031, 1033, 1061, 1063
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 30 in {11, 13} ]; // Vincenzo Librandi, Aug 14 2012
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{11,13}, Mod[#,30]]&]  (* Harvey P. Dale, Mar 12 2011 *)

A138620 Nonnegative integers n such that 12*n-1 is prime.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 9, 11, 14, 15, 16, 19, 20, 21, 22, 26, 29, 30, 32, 35, 36, 37, 39, 40, 41, 42, 47, 49, 50, 54, 55, 57, 60, 62, 69, 70, 72, 74, 76, 79, 81, 82, 85, 86, 91, 92, 96, 97, 99, 102, 105, 107, 109, 110, 114, 119, 120, 121, 124, 125, 126, 127, 130
Offset: 1

Views

Author

Keywords

Examples

			12*1-1=11, 12*2-1=23, 12*4-1=47, 12*5-1=59, ...
		

Crossrefs

Cf. A068231 (resulting primes).

Programs

  • Mathematica
    a={};Do[x=12*n-1;If[PrimeQ[x],AppendTo[a,n]],{n,10^2}];a
    Select[Range[500],PrimeQ[12#-1]&] (* Harvey P. Dale, May 14 2011 *)

Extensions

More terms from Harvey P. Dale, May 14 2011

A141798 Numbers n such that 2*23^n + 1 is prime.

Original entry on oeis.org

0, 1, 5, 21, 261, 47589, 93337
Offset: 1

Views

Author

Rick L. Shepherd, Jul 05 2008

Keywords

Comments

Primes found and proved by PrimeForm. No more terms up to 20000.
a(6) and a(7) proved prime by the primality proving program LLR. - Robert Price, Jan 06 2016
a(8) > 2*10^5. - Robert Price, Jan 06 2016

Crossrefs

Programs

Extensions

a(6)-a(7) from Robert Price, Jan 06 2016

A138905 a(n) is n-th prime == -1 (mod 6n).

Original entry on oeis.org

5, 23, 71, 167, 179, 431, 461, 863, 863, 839, 1583, 1511, 1949, 2099, 2339, 4127, 4283, 4751, 4673, 4919, 5669, 6599, 8693, 10079, 7349, 10607, 12149, 11087, 12527, 11159, 15809, 19583, 16829, 19583, 13859, 25703, 24197, 25307, 23633, 21839, 34439
Offset: 1

Views

Author

Zak Seidov, Apr 03 2008

Keywords

Examples

			a(1) = 1st term in A007528 (Primes of form 6n-1)
a(2) = 2nd term in A068231 (Primes congruent to 11 (mod 12))
a(3) = 3rd term in A061242 (Primes of form 18n-1)
a(4) = 4th term in A134517 (Primes of form 24n-1)
a(5) = 5th term in A132236 (Primes congruent to 29 (mod 30))
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{p=1,cnt=0},Until[cnt==n,If[Mod[Prime[p],6n]==6n-1,cnt++];p++];Prime[p-1]];Array[a,41] (* James C. McMahon, Jun 22 2025 *)

A141774 Numbers n such that 2*11^n + 1 is prime.

Original entry on oeis.org

0, 1, 3, 9, 43, 79, 175, 11325, 13359, 18577
Offset: 1

Views

Author

Rick L. Shepherd, Jul 03 2008

Keywords

Comments

a(11) > 2*10^5. - Robert Price, Oct 16 2015

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range[1, 175, 2], PrimeQ[2*11^# + 1] &]] (* Arkadiusz Wesolowski, Nov 06 2012 *)
  • PARI
    for(n=0, 1e5, if(isprime(2*11^n + 1), print1(n", "))) \\ Altug Alkan, Oct 16 2015

Extensions

a(8)-a(10) from Arkadiusz Wesolowski, Nov 06 2012

A141682 Number of isomorphism classes of (2n+1)-reflexive polygons.

Original entry on oeis.org

16, 1, 12, 29, 1, 61, 81, 1, 113, 131, 2, 163, 50, 2, 215, 233, 2, 34, 285, 3, 317, 335, 2, 367, 182, 3, 419, 72, 4, 469, 489, 3, 93, 539, 4, 571, 591, 3, 185, 641, 5, 673, 131, 5, 725, 240, 6, 148, 795, 5, 827, 845, 3, 877, 897, 7, 929, 186, 6, 338, 656, 7, 240, 1049, 8, 1081, 393, 5, 1133, 1151, 8, 542, 245, 7, 1235, 1253
Offset: 0

Views

Author

Benjamin Nill, Jul 02 2012

Keywords

Comments

There are no l-reflexive polygons for even index l.

Examples

			a(0)=16 equals the number of isomorphism classes of (1-)reflexive polygons, A090045(2).
		

Crossrefs

Cf. A090045.

Formula

It seems that for n > 2, a(n) = 17*n - k where k = 21, 22, 23, 24 iff 2*n+1 is a prime from A068228, A068229, A040117, A068231, respectively. - Andrey Zabolotskiy, Apr 21 2022

A160593 Indices of primes congruent to 11 modulo 12.

Original entry on oeis.org

5, 9, 15, 17, 20, 23, 28, 32, 39, 41, 43, 49, 52, 54, 56, 64, 69, 72, 76, 81, 83, 86, 91, 92, 94, 96, 103, 107, 109, 118, 120, 124, 128, 132, 144, 146, 150, 154, 156, 161, 164, 166, 171, 173, 182, 185, 190, 192, 195, 200, 205, 208, 214, 215, 219, 225, 228, 230, 236
Offset: 1

Views

Author

M. F. Hasler, May 22 2009

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 02 2021

Examples

			a(1) = 5 since the 5th prime, A000040(5) = 11, is the first one to be equal to 11 (mod 12).
a(2) = 9 since the 9th prime, A000040(9) = 23, is the second one to be equal to 11 (mod 12).
		

Crossrefs

A116610 lists the even terms of this sequence, divided by 2.

Programs

  • Mathematica
    Position[Mod[Prime[Range[250]],12],11]//Flatten (* Harvey P. Dale, Apr 13 2022 *)
  • PARI
    for( n=1,999, prime(n)%12==11 & print1(n","))

Formula

a(n) = A000720(A068231(n)).
Previous Showing 21-30 of 40 results. Next