A069299
Number of n X 8 binary arrays with a path of adjacent 1's from upper left corner to anywhere in right hand column.
Original entry on oeis.org
985, 453423, 158755329, 48861110849, 14020698615685, 3860368291738151, 1036037626157286045, 273552889555043981667, 71469066339273464672861, 18543498700760853810422275, 4789484633305049073669332993, 1233335138386307928872371551119
Offset: 2
Cf. n X 2
A002450, n X 3
A069294, n X 4
A069295, n X 5
A069296, n X 6
A069297, n X 7
A069298, n X 9
A069300, n X 10
A069301, n X 11
A069302, n X 12
A069303, n X 13
A069304, n X 14
A069305, read by rows
A069306-
A069320.
A069300
Number of n X 9 binary arrays with a path of adjacent 1's from upper left corner to anywhere in right hand column.
Original entry on oeis.org
2378, 2396868, 1771648672, 1130534931080, 665580139683936, 373423075547578456, 203239076083010593472, 108443838410200501279708, 57104283197019200756790188, 29803331617203085845704313992, 15460814292574112201614850454092, 7987403217621240109184116174886680
Offset: 2
Cf. n X 2
A002450, n X 3
A069294, n X 4
A069295, n X 5
A069296, n X 6
A069297, n X 7
A069298, n X 8
A069299, n X 10
A069301, n X 11
A069302, n X 12
A069303, n X 13
A069304, n X 14
A069305, read by rows
A069306-
A069320.
A069301
Number of n X 10 binary arrays with a path of adjacent 1's from upper left corner to anywhere in right hand column.
Original entry on oeis.org
5741, 12670261, 19771329973, 26160665637805, 31605577678427531, 36146216722785667861, 39916149930281967457205, 43066986985849138740694549, 45738751568329997358178054329, 48049989770896486757102805620329, 50096394975413699108192666406325657
Offset: 2
Cf. n X 2
A002450, n X 3
A069294, n X 4
A069295, n X 5
A069296, n X 6
A069297, n X 7
A069298, n X 8
A069299, n X 9
A069300, n X 11
A069302, n X 12
A069303, n X 13
A069304, n X 14
A069305, read by rows
A069306-
A069320.
A069302
Number of n X 11 binary arrays with a path of adjacent 1's from upper left corner to anywhere in right hand column.
Original entry on oeis.org
13860, 66977242, 220646655318, 605385196535596, 1501028805154667736, 3500044399151834410528, 7844661838902748923237822, 17121637307123834033940314568, 36691638903540665604692077389476, 77626289171582272584203485766947172
Offset: 2
Cf. n X 2
A002450, n X 3
A069294, n X 4
A069295, n X 5
A069296, n X 6
A069297, n X 7
A069298, n X 8
A069299, n X 9
A069300, n X 10
A069301, n X 12
A069303, n X 13
A069304, n X 14
A069305, read by rows
A069306-
A069320.
A069303
Number of n X 12 binary arrays with a path of adjacent 1's from upper left corner to anywhere in right hand column.
Original entry on oeis.org
33461, 354053617, 2462407613981, 14009490587031167, 71292415421456529651, 338969996144009158522891, 1542263634548542336151173999, 6811155547203848959429866325465, 29462439537258441022480797977381647, 125575826853940088096659037959183104657
Offset: 2
Cf. n X 2
A002450, n X 3
A069294, n X 4
A069295, n X 5
A069296, n X 6
A069297, n X 7
A069298, n X 8
A069299, n X 9
A069300, n X 10
A069301, n X 11
A069302, n X 13
A069304, n X 14
A069305, read by rows
A069306-
A069320.
A069304
Number of n X 13 binary arrays with a path of adjacent 1's from upper left corner to anywhere in right hand column.
Original entry on oeis.org
80782, 1871590506, 27480393415984, 324202249915245972, 3386189554819795682250, 32831359005580196869725148, 303271759994928192091591236664, 2710567644648890574598792001139520, 23671928574368475557299894398216017188, 203322469544117825662881107321485212321552
Offset: 2
Cf. n X 2
A002450, n X 3
A069294, n X 4
A069295, n X 5
A069296, n X 6
A069297, n X 7
A069298, n X 8
A069299, n X 9
A069300, n X 10
A069301, n X 11
A069302, n X 12
A069303, n X 14
A069305, read by rows
A069306-
A069320.
A215928
a(n) = 2*a(n-1) + a(n-2) for n > 2, a(0) = a(1) = 1, a(2) = 2.
Original entry on oeis.org
1, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681, 543339720, 1311738121, 3166815962, 7645370045, 18457556052, 44560482149, 107578520350, 259717522849
Offset: 0
G.f. = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 70*x^6 + 169*x^7 + 408*x^8 + 985*x^9 + ...
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..500
- Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
- E. S. Egge and T. Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.
- Index entries for linear recurrences with constant coefficients, signature (2,1).
-
[1] cat [ n le 2 select (n) else 2*Self(n-1)+Self(n-2): n in [1..35] ]; // Vincenzo Librandi, May 14 2015
-
f:= gfun:-rectoproc({a(n)=2*a(n-1)+a(n-2), a(0)=1, a(1)=1, a(2)=2}, a(n), remember):
map(f, [$0..100]); # Robert Israel, May 29 2015
-
CoefficientList[Series[(1 - x - x^2)/(1 - 2 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 14 2015 *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / (1 - x / (1 - x / (1 - x / (1 + x)))) + x * O(x^n), n))};
A374439
Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 2]
[ 2] [1, 2, 1]
[ 3] [1, 2, 2, 2]
[ 4] [1, 2, 3, 4, 1]
[ 5] [1, 2, 4, 6, 3, 2]
[ 6] [1, 2, 5, 8, 6, 6, 1]
[ 7] [1, 2, 6, 10, 10, 12, 4, 2]
[ 8] [1, 2, 7, 12, 15, 20, 10, 8, 1]
[ 9] [1, 2, 8, 14, 21, 30, 20, 20, 5, 2]
[10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
| n | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 0 | -1 | 1 | 1 | 1 |
| 1 | 1 | 3 | 0 | 4 |
| 2 | 0 | 4 | 1 | 9 |
| 3 | 1 | 7 | 2 | 22 |
| 4 | 1 | 11 | 5 | 53 |
| 5 | 2 | 18 | 12 | 128 |
| 6 | 3 | 29 | 29 | 309 |
| 7 | 5 | 47 | 70 | 746 |
| 8 | 8 | 76 | 169 | 1801 |
| 9 | 13 | 123 | 408 | 4348 |
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way):
A022087,
A055389,
A118658,
A052542,
A163271,
A371596,
A324969,
A212804,
A077985,
A069306,
A215928.
-
function T(n,k) // T = A374439
if k lt 0 or k gt n then return 0;
elif k le 1 then return k+1;
else return T(n-1,k) + T(n-2,k-2);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
-
A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
# Alternative, using the function qStirling2 from A333143:
T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k > n: return 0
if k < 2: return k + 1
return T(n - 1, k) + T(n - 2, k - 2)
-
from math import comb as binomial
def T(n: int, k: int) -> int:
o = k & 1
return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
-
def P(n, x):
if n < 0: return P(n, x)
return sum(T(n, k)*x**k for k in range(n + 1))
def sgn(x: int) -> int: return (x > 0) - (x < 0)
# Table of interpolated sequences
print("| n | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
print("| | Fibonacci | Lucas | Pell | Pell* |")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:5d} | {4:4d} |"
for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
-
from sage.combinat.q_analogues import q_stirling_number2
def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025
A215936
a(n) = -2*a(n-1) + a(n-2) for n > 2, with a(0) = a(1) = 1, a(2) = 0.
Original entry on oeis.org
1, 1, 0, 1, -2, 5, -12, 29, -70, 169, -408, 985, -2378, 5741, -13860, 33461, -80782, 195025, -470832, 1136689, -2744210, 6625109, -15994428, 38613965, -93222358, 225058681, -543339720, 1311738121, -3166815962, 7645370045, -18457556052, 44560482149
Offset: 0
G.f. = 1 + x + x^3 - 2*x^4 + 5*x^5 - 12*x^6 + 29*x^7 - 70*x^8 + 169*x^9 - 408*x^10 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Index entries for linear recurrences with constant coefficients, signature (-2,1).
-
[1,1] cat [n le 2 select (n-1) else -2*Self(n-1)+Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Sep 09 2013
-
CoefficientList[Series[(1 + 3 x + x^2)/(1 + 2 x - x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 09 2013 *)
a[ n_] := With[ {m = If[ n < 1, 1 - n, n], s = If[ n < 1, (-1)^n, 1]}, s SeriesCoefficient[ x (1 + 2 x) / (1 + 2 x - x^2), {x, 0, m}]]; (* Michael Somos, Mar 19 2019 *)
-
{a(n) = my(m=n, s=1); if(n<1, m=1-n; s=(-1)^n); s * polcoeff( x * (1 + 2*x) / (1 + 2*x - x^2) + x * O(x^m), m)}; /* Michael Somos, Mar 19 2019 */
A176981
Expansion of 2+(1-2*x)/(-1+2*x+x^2).
Original entry on oeis.org
1, 0, -1, -2, -5, -12, -29, -70, -169, -408, -985, -2378, -5741, -13860, -33461, -80782, -195025, -470832, -1136689, -2744210, -6625109, -15994428, -38613965, -93222358, -225058681, -543339720, -1311738121, -3166815962, -7645370045, -18457556052, -44560482149
Offset: 0
1 - x^2 - 2*x^3 - 5*x^4 - 12*x^5 - 29*x^6 - 70*x^7 - 169*x^8 - 408*x^9 - 985*x^10 + ...
-
a[0] = 1; a[n_] := a[n] = a[n - 1] - Sqrt[2*a[n - 1]^2 + (-1)^n]; Table[a[n], {n, 0, 30}]
Join[{1}, LinearRecurrence[{2, 1}, {0, -1}, 30]] (* or *) Join[{1}, Rest[ CoefficientList[Series[1 + (1 - 2 x)/(-1 + 2 x + x^2), {x, 0, 30}], x]]] (* Harvey P. Dale, Dec 24 2011 *)
FullSimplify[Join[{1}, Table[((1 - Sqrt[2])^(n-1) - (1 + Sqrt[2])^(n-1)) / 2^(3/2), {n, 1, 30}]]] (* Vaclav Kotesovec, Sep 01 2025 *)
Comments