cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 87 results. Next

A024787 Number of 3's in all partitions of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 9, 15, 21, 31, 45, 63, 87, 122, 164, 222, 298, 395, 519, 683, 885, 1146, 1475, 1887, 2401, 3050, 3845, 4837, 6060, 7563, 9402, 11664, 14405, 17751, 21807, 26715, 32634, 39784, 48352, 58649, 70969, 85690, 103232, 124143, 148951, 178407, 213277, 254509
Offset: 1

Views

Author

Keywords

Comments

Starting with the first 1 = row sums of triangle A173239. - Gary W. Adamson, Feb 13 2010
The sums of three successive terms give A000070. - Omar E. Pol, Jul 12 2012
a(n) is also the difference between the sum of 3rd largest and the sum of 4th largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012

Examples

			From _Omar E. Pol_, Oct 25 2012: (Start)
For n = 7 we have:
--------------------------------------
.                             Number
Partitions of 7               of 3's
--------------------------------------
7 .............................. 0
4 + 3 .......................... 1
5 + 2 .......................... 0
3 + 2 + 2 ...................... 1
6 + 1 .......................... 0
3 + 3 + 1 ...................... 2
4 + 2 + 1 ...................... 0
2 + 2 + 2 + 1 .................. 0
5 + 1 + 1 ...................... 0
3 + 2 + 1 + 1 .................. 1
4 + 1 + 1 + 1 .................. 0
2 + 2 + 1 + 1 + 1 .............. 0
3 + 1 + 1 + 1 + 1 .............. 1
2 + 1 + 1 + 1 + 1 + 1 .......... 0
1 + 1 + 1 + 1 + 1 + 1 + 1 ...... 0
------------------------------------
.      13 - 7 =                  6
The difference between the sum of the third column and the sum of the fourth column of the set of partitions of 7 is 13 - 7 = 6 and equals the number of 3's in all partitions of 7, so a(7) = 6.
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g;
          if n=0 or i=1 then [1, 0]
        else g:= `if`(i>n, [0$2], b(n-i, i));
             b(n, i-1) +g +[0, `if`(i=3, g[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 27 2012
  • Mathematica
    Table[ Count[ Flatten[ IntegerPartitions[n]], 3], {n, 1, 50} ]
    b[n_, i_] := b[n, i] = Module[{g}, If[n==0 || i==1, {1, 0}, g = If[i>n, {0, 0}, b[n-i, i]]; b[n, i-1] + g + {0, If[i==3, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
    Join[{0, 0}, (1/((1 - x^3) QPochhammer[x]) + O[x]^50)[[3]]] (* Vladimir Reshetnikov, Nov 22 2016 *)

Formula

a(n) = A181187(n,3) - A181187(n,4). - Omar E. Pol, Oct 25 2012
a(n) = Sum_{k=1..floor(n/3)} A263232(n,k). - Alois P. Heinz, Nov 01 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (6*Pi*sqrt(2*n)) * (1 - 37*Pi/(24*sqrt(6*n)) + (37/48 + 937*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
G.f.: x^3/((1 - x)*(1 - x^2)*(1 - x^3)) * Sum_{n >= 0} x^(3*n)/( Product_{k = 1..n} 1 - x^k ); that is, convolution of A069905 (partitions into 3 parts, or, modulo offset differences, partitions into parts <= 3) and A008483 (partitions into parts >= 3). - Peter Bala, Jan 17 2021

A337453 Numbers k such that the k-th composition in standard order is an ordered triple of distinct positive integers.

Original entry on oeis.org

37, 38, 41, 44, 50, 52, 69, 70, 81, 88, 98, 104, 133, 134, 137, 140, 145, 152, 161, 176, 194, 196, 200, 208, 261, 262, 265, 268, 274, 276, 289, 290, 296, 304, 321, 324, 328, 352, 386, 388, 400, 416, 517, 518, 521, 524, 529, 530, 532, 536, 545, 560, 577, 578
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
     37: (3,2,1)    140: (4,1,3)    289: (3,5,1)
     38: (3,1,2)    145: (3,4,1)    290: (3,4,2)
     41: (2,3,1)    152: (3,1,4)    296: (3,2,4)
     44: (2,1,3)    161: (2,5,1)    304: (3,1,5)
     50: (1,3,2)    176: (2,1,5)    321: (2,6,1)
     52: (1,2,3)    194: (1,5,2)    324: (2,4,3)
     69: (4,2,1)    196: (1,4,3)    328: (2,3,4)
     70: (4,1,2)    200: (1,3,4)    352: (2,1,6)
     81: (2,4,1)    208: (1,2,5)    386: (1,6,2)
     88: (2,1,4)    261: (6,2,1)    388: (1,5,3)
     98: (1,4,2)    262: (6,1,2)    400: (1,3,5)
    104: (1,2,4)    265: (5,3,1)    416: (1,2,6)
    133: (5,2,1)    268: (5,1,3)    517: (7,2,1)
    134: (5,1,2)    274: (4,3,2)    518: (7,1,2)
    137: (4,3,1)    276: (4,2,3)    521: (6,3,1)
		

Crossrefs

6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts these compositions.
A007304 is an unordered version.
A014311 is the non-strict version.
A337461 counts the coprime case.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A014612 ranks 3-part partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[stc[#]]==3&&UnsameQ@@stc[#]&]

Formula

These triples are counted by 6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1).
Intersection of A014311 and A233564.

A026923 Number of partitions of n into an odd number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an even number of parts, each <= 3.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 2, 4, 3, 6, 5, 8, 7, 11, 9, 13, 12, 17, 15, 20, 18, 24, 22, 28, 26, 33, 30, 37, 35, 43, 40, 48, 45, 54, 51, 60, 57, 67, 63, 73, 70, 81, 77, 88, 84, 96, 92, 104, 100, 113, 108, 121, 117, 131
Offset: 1

Views

Author

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      0      1      1      3      2      4      3      ...
-----------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 06 2019
		

Crossrefs

Programs

  • Maple
    A026923 := proc(n)
        local a,p1,p2,p3 ;
        a := 0 ;
        for p1 from 0 to n do
            for p2 from 0 to (n-p1)/2 do
                p3 := (n-p1-2*p2)/3 ;
                if type(p3,'integer') and p3 >=1 and type(p1+p2+p3,'odd') then
                    a := a+1 ;
                end if:
            end do:
        end do:
        a;
    end proc: # R. J. Mathar, Aug 22 2019

Formula

a(n) + A026927(n) = A069905(n). - R. J. Mathar, Aug 22 2019
Conjectures from Colin Barker, Sep 01 2019: (Start)
G.f.: x^3*(1 - x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11.
(End)

A026927 Number of partitions of n into an even number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an odd number of parts, each <= 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 1, 3, 3, 5, 4, 7, 6, 9, 8, 12, 11, 15, 13, 18, 17, 22, 20, 26, 24, 30, 28, 35, 33, 40, 37, 45, 43, 51, 48, 57, 54, 63, 60, 70, 67, 77, 73, 84, 81, 92, 88, 100, 96, 108, 104, 117
Offset: 1

Views

Author

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      1      1      2      1      3      3      5      ...
-----------------------------------------------------------------------
		

Crossrefs

Formula

a(n) + A026923(n) = A069905(n). - R. J. Mathar, Aug 22 2019
Conjectures from Colin Barker, Sep 01 2019: (Start)
G.f.: x^4*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11.
(End)

A325691 Number of length-3 integer partitions of n whose largest part is not greater than the sum of the other two.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 7, 9, 8, 11, 10, 13, 12, 15, 14, 18, 16, 20, 19, 23, 21, 26, 24, 29, 27, 32, 30, 36, 33, 39, 37, 43, 40, 47, 44, 51, 48, 55, 52, 60, 56, 64, 61, 69, 65, 74, 70, 79, 75, 84, 80, 90, 85, 95, 91, 101, 96, 107, 102, 113
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

Also the number of possible triples of edge-lengths of a triangle with perimeter n, where degenerate (self-intersecting) triangles are allowed.
The number of triples (a,b,c) for 1 <= a <= b <= c <= a+b and a+b+c = n. - Yuchun Ji, Oct 15 2020

Examples

			The a(3) = 1 through a(12) = 6 partitions:
  (111)  (211)  (221)  (222)  (322)  (332)  (333)  (433)  (443)  (444)
                       (321)  (331)  (422)  (432)  (442)  (533)  (543)
                                     (431)  (441)  (532)  (542)  (552)
                                                   (541)  (551)  (633)
                                                                 (642)
                                                                 (651)
		

Crossrefs

Cf. A001399, A005044 (nondegenerate triangles), A008642, A069905, A124278.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],#[[1]]<=#[[2]]+#[[3]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + x - x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. (End)
a(n) = A005044(n+3) - A000035(n+3). i.e., remove the only one triple (a=0,b,b) if n is even from the A005044 which is the number of triples (a,b,c) for 0 <= a <= b <= c <= a+b and a+b+c = n. - Yuchun Ji, Oct 15 2020
The above conjectured formulas are true. - Stefano Spezia, May 19 2023

A337484 Number of ordered triples of positive integers summing to n that are neither strictly increasing nor strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 8, 13, 17, 22, 28, 35, 41, 50, 58, 67, 77, 88, 98, 111, 123, 136, 150, 165, 179, 196, 212, 229, 247, 266, 284, 305, 325, 346, 368, 391, 413, 438, 462, 487, 513, 540, 566, 595, 623, 652, 682, 713, 743, 776, 808, 841, 875, 910, 944, 981, 1017
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2020

Keywords

Examples

			The a(3) = 1 through a(7) = 13 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)
           (1,2,1)  (1,2,2)  (1,3,2)  (1,3,3)
           (2,1,1)  (1,3,1)  (1,4,1)  (1,4,2)
                    (2,1,2)  (2,1,3)  (1,5,1)
                    (2,2,1)  (2,2,2)  (2,1,4)
                    (3,1,1)  (2,3,1)  (2,2,3)
                             (3,1,2)  (2,3,2)
                             (4,1,1)  (2,4,1)
                                      (3,1,3)
                                      (3,2,2)
                                      (3,3,1)
                                      (4,1,2)
                                      (5,1,1)
		

Crossrefs

A140106 is the unordered case.
A242771 allows strictly increasing but not strictly decreasing triples.
A337481 counts these compositions of any length.
A001399(n - 6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A332745 counts partitions with weakly increasing or weakly decreasing run-lengths.
A332835 counts compositions with weakly increasing or weakly decreasing run-lengths.
A337483 counts triples either weakly increasing or weakly decreasing.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&&!Greater@@#&]],{n,0,15}]

Formula

a(n) = 2*A242771(n - 1) - A000217(n - 1), n > 0.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) is the complement.
4*A001399(n - 6) = 4*A069905(n - 3) = 4*A211540(n - 1) is the strict case.
Conjectures from Colin Barker, Sep 13 2020: (Start)
G.f.: x^3*(1 + 2*x + 2*x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6.
(End)

A337483 Number of ordered triples of positive integers summing to n that are either weakly increasing or weakly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 5, 8, 10, 13, 16, 20, 23, 28, 32, 37, 42, 48, 53, 60, 66, 73, 80, 88, 95, 104, 112, 121, 130, 140, 149, 160, 170, 181, 192, 204, 215, 228, 240, 253, 266, 280, 293, 308, 322, 337, 352, 368, 383, 400, 416, 433, 450, 468, 485, 504, 522, 541, 560
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 10 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (2,1,1)  (1,2,2)  (1,2,3)  (1,2,4)  (1,2,5)
                    (2,2,1)  (2,2,2)  (1,3,3)  (1,3,4)
                    (3,1,1)  (3,2,1)  (2,2,3)  (2,2,4)
                             (4,1,1)  (3,2,2)  (2,3,3)
                                      (3,3,1)  (3,3,2)
                                      (4,2,1)  (4,2,2)
                                      (5,1,1)  (4,3,1)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A001399(n - 3) = A069905(n) = A211540(n + 2) counts the unordered case.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) counts the strict case.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts the strict unordered case.
A329398 counts these compositions of any length.
A218004 counts strictly increasing or weakly decreasing compositions.
A337484 counts neither strictly increasing nor strictly decreasing compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],LessEqual@@#||GreaterEqual@@#&]],{n,0,30}]

Formula

a(n > 0) = 2*A001399(n - 3) - A079978(n).
From Colin Barker, Sep 08 2020: (Start)
G.f.: x^3*(1 + x + x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6. (End)
E.g.f.: (36 - 9*exp(-x) + exp(x)*(6*x^2 + 6*x - 19) - 8*exp(-x/2)*cos(sqrt(3)*x/2))/36. - Stefano Spezia, Apr 05 2023

A337602 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 10, 9, 18, 16, 24, 21, 43, 24, 51, 31, 54, 42, 94, 45, 102, 55, 99, 69, 163, 66, 150, 88, 168, 96, 265, 93, 228, 121, 246, 126, 337, 132, 315, 169, 342, 162, 487, 165, 420, 217, 411, 213, 619, 207, 558, 259, 540, 258, 784, 264, 654, 325, 660
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,3,3)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,5,1)  (1,3,4)
                    (2,1,2)  (1,4,1)  (2,2,3)  (1,4,3)
                    (2,2,1)  (2,1,3)  (2,3,2)  (1,5,2)
                    (3,1,1)  (2,2,2)  (3,1,3)  (1,6,1)
                             (2,3,1)  (3,2,2)  (2,1,5)
                             (3,1,2)  (3,3,1)  (2,3,3)
                             (3,2,1)  (5,1,1)  (2,5,1)
                             (4,1,1)           (3,1,4)
                                               (3,2,3)
                                               (3,3,2)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

The complement in A014311 of A337695 ranks these compositions.
A220377*6 is the strict case.
A337600 is the unordered version.
A337603 does not consider a singleton to be coprime unless it is (1).
A337664 counts these compositions of any length.
A000740 counts relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
A000217 counts 3-part compositions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,100}]

A100565 a(n) = Card{(x,y,z) : x <= y <= z, x|n, y|n, z|n, gcd(x,y)=1, gcd(x,z)=1, gcd(y,z)=1}.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5, 2, 25, 5, 5, 5, 11, 2, 25, 5, 8, 5, 5, 5, 17
Offset: 1

Views

Author

Vladeta Jovovic, Nov 28 2004

Keywords

Comments

First differs from A018892 at a(30) = 15, A018892(30) = 14.
First differs from A343654 at a(210) = 51, A343654(210) = 52.
Also a(n) = Card{(x,y,z) : x <= y <= z and lcm(x,y)=n, lcm(x,z)=n, lcm(y,z)=n}.
In words, a(n) is the number of pairwise coprime unordered triples of divisors of n. - Gus Wiseman, May 01 2021

Examples

			From _Gus Wiseman_, May 01 2021: (Start)
The a(n) triples for n = 1, 2, 4, 6, 8, 12, 24:
  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)   (1,1,1)
           (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)   (1,1,2)
                    (1,1,4)  (1,1,3)  (1,1,4)  (1,1,3)   (1,1,3)
                             (1,1,6)  (1,1,8)  (1,1,4)   (1,1,4)
                             (1,2,3)           (1,1,6)   (1,1,6)
                                               (1,2,3)   (1,1,8)
                                               (1,3,4)   (1,2,3)
                                               (1,1,12)  (1,3,4)
                                                         (1,3,8)
                                                         (1,1,12)
                                                         (1,1,24)
(End)
		

Crossrefs

Positions of 2's through 5's are A000040, A001248, A030078, A068993.
The version for subsets of {1..n} instead of divisors is A015617.
The version for pairs of divisors is A018892.
The ordered version is A048785.
The strict case is A066620.
The version for strict partitions is A220377.
A version for sets of divisors of any size is A225520.
The version for partitions is A307719 (no 1's: A337563).
The case of distinct parts coprime is A337600 (ordered: A337602).
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A051026 counts pairwise indivisible subsets of {1..n}.
A302696 lists Heinz numbers of pairwise coprime partitions.
A337461 counts 3-part pairwise coprime compositions.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#==1&/@Subsets[y,{2}]);
    Table[Length[Select[Tuples[Divisors[n],3],LessEqual@@#&&pwcop[#]&]],{n,30}] (* Gus Wiseman, May 01 2021 *)
  • PARI
    A100565(n) = (numdiv(n^3)+3*numdiv(n)+2)/6; \\ Antti Karttunen, May 19 2017

Formula

a(n) = (tau(n^3) + 3*tau(n) + 2)/6.

A337600 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 9, 7, 10, 8, 11, 11, 18, 12, 19, 13, 19, 17, 30, 16, 28, 20, 31, 23, 47, 23, 42, 26, 45, 27, 60, 31, 57, 35, 61, 37, 85, 38, 75, 43, 74, 47, 108, 45, 98, 52, 96, 56, 136, 54, 115, 64, 117, 67, 175, 65, 139, 76, 144, 75, 195
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337601 at a(9) = 5, A337601(9) = 4.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  222  322  332  333  433  443  444  544  554
            311  321  331  431  441  532  533  543  553  743
                 411  511  521  522  541  551  552  661  752
                           611  531  721  722  651  733  761
                                711  811  731  732  751  833
                                          911  741  922  851
                                               831  B11  941
                                               921       A31
                                               A11       B21
                                                         C11
		

Crossrefs

A220377 is the strict case.
A304712 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337601 does not consider a singleton to be coprime unless it is (1).
A337602 is the ordered version.
A337664 counts compositions of this type and any length.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A304709 counts partitions whose distinct parts are pairwise coprime.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime length-3 compositions.
A337563 counts pairwise coprime length-3 partitions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337601(n) + A079978(n).
Previous Showing 31-40 of 87 results. Next