cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 88 results. Next

A136356 Increasing sequence obtained by union of two sequences A136353 and {b(n)}, where b(n) is the smallest composite number m such that m-1 is prime and the set of distinct prime factors of m consists of the first n primes.

Original entry on oeis.org

4, 6, 9, 15, 30, 105, 420, 1155, 2310, 15015, 30030, 255255, 1021020, 4849845, 19399380, 111546435, 669278610, 9704539845, 38818159380, 100280245065, 601681470390, 14841476269620, 18551845337025, 152125131763605
Offset: 1

Views

Author

Enoch Haga, Dec 25 2007

Keywords

Comments

This sequence is different from A070826 and A118750.

Examples

			a(4)=15 because k=2 and prime factors are 3 and 5; 15 is odd and n-2=13, prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(c=Product[Prime[k],{k,n}]; For[m=1,!(!PrimeQ[c*m]&&PrimeQ[c*m-1]&&Length[FactorInteger[c*m]]==n),m++ ]; c*m);
    b[n_]:=(c=Product[Prime[k],{k,2,n+1}]; For[m=1,!(!PrimeQ[c(2m-1)]&&PrimeQ[c(2m-1)-2]&&Length[FactorInteger[c(2*m-1)]]==n),m++ ]; c(2m-1));
    Take[Union[Table[a[k],{k,24}],Table[b[k],{k,24}]],24] (* Farideh Firoozbakht, Aug 13 2009 *)

Extensions

Edited, corrected and extended by Farideh Firoozbakht, Aug 13 2009

A136357 Increasing sequence obtained by union of two sequences A136354 and {b(n)}, where b(n) is the smallest composite number m such that m+1 is prime and the set of distinct prime factors of m consists of the first n primes.

Original entry on oeis.org

4, 6, 9, 15, 30, 105, 210, 2310, 3465, 15015, 120120, 765765, 4084080, 33948915, 106696590, 334639305, 892371480, 3234846615, 71166625530, 100280245065, 200560490130, 3710369067405, 29682952539240, 1369126185872445
Offset: 1

Views

Author

Enoch Haga, Dec 25 2007

Keywords

Comments

This sequence is different from A070826 and A118750.

Examples

			a(4)=15 because k=2 with prime factors 3 and 5 and 15 is followed by 17, prime;
a(5)=30 because k=3 with prime factors 2, 3, 5 and 30 is followed by 31, prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(c=Product[Prime[k],{k,n}]; For[m=1,!(!PrimeQ[c*m]&&PrimeQ[c*m+1]&& Length[FactorInteger[c*m]]==n),m++ ]; c*m);
    b[n_]:=(c=Product[Prime[k],{k,2, n+1}]; For[m=1,!(!PrimeQ[c(2*m-1)]&&PrimeQ[c(2*m-1)+2]&&Length[FactorInteger [c(2*m-1)]]==n),m++ ]; c(2*m-1));
    Take[Union[Table[a[k],{k,24}],Table[b[k],{k, 24}]],24] (* Farideh Firoozbakht, Aug 13 2009 *)

Extensions

Edited, corrected and extended by Farideh Firoozbakht, Aug 13 2009

A164979 Slowest growing sequence of primes having the semiprime-pairwise property: for any i,j, a(i)+a(j) is semiprime.

Original entry on oeis.org

2, 7, 19, 67, 127, 6619, 126127, 345979, 476407, 1658119, 15182459419, 105169832587, 287583971287
Offset: 1

Views

Author

Zak Seidov, Sep 03 2009

Keywords

Comments

By Dirichlet's theorem and Linnik's theorem, a(n) exists for all n. - Charles R Greathouse IV, Jun 03 2025

Crossrefs

Subsequence of A045375.

Programs

  • PARI
    lista(pmax) = {my(v = [2], ans); print1(v[1], ", "); forprime(p=3, pmax, ans = 1; for(i=1, #v, if(bigomega(p + v[i]) != 2, ans = 0; break)); if(ans, print1(p, ", "); v=concat(v, p)));} \\ Amiram Eldar, Jun 27 2024

Formula

a(n) = A114845(n)/2.
a(n) << A070826(n)^5. - Charles R Greathouse IV, Jun 03 2025

Extensions

a(12) from Amiram Eldar, Jun 27 2024
a(13) from Jinyuan Wang, May 29 2025

A196529 Half of greatest common divisor of products of first n prime numbers and first n composite numbers.

Original entry on oeis.org

1, 3, 3, 3, 15, 15, 105, 105, 105, 105, 105, 105, 1155, 1155, 1155, 15015, 15015, 15015, 15015, 15015, 15015, 255255, 255255, 255255, 4849845, 4849845, 4849845, 4849845, 4849845, 4849845, 111546435, 111546435, 111546435, 111546435, 111546435, 111546435
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 03 2011

Keywords

Comments

a(n) = gcd(A002110(n),A036691(n)) / 2.

Examples

			a(3) = gcd(2*3*5,4*6*8)/2 = gcd(30,192)/2 = 6/2 = 3;
a(4) = gcd(2*3*5*7,4*6*8*9)/2 = gcd(210,1728)/2 = 6/2 = 3;
a(5) = gcd(2*3*5*7*11,4*6*8*9*10)/2 = gcd(2310,17280)/2 = 30/2 = 15.
		

Crossrefs

Programs

  • Mathematica
    nn=40;With[{prs=Prime[Range[nn]],comps=Take[Complement[Range[Prime[nn]], Prime[ Range[nn]]],nn]},Rest[Table[GCD[Times@@Take[prs,n], Times@@Take[ comps,n]]/2,{n,nn}]]] (* Harvey P. Dale, Oct 16 2011 *)

A258566 Triangle in which n-th row contains all possible products of n-1 of the first n primes in descending order.

Original entry on oeis.org

1, 3, 2, 15, 10, 6, 105, 70, 42, 30, 1155, 770, 462, 330, 210, 15015, 10010, 6006, 4290, 2730, 2310, 255255, 170170, 102102, 72930, 46410, 39270, 30030, 4849845, 3233230, 1939938, 1385670, 881790, 746130, 570570, 510510
Offset: 1

Views

Author

Philippe Deléham, Jun 03 2015

Keywords

Comments

Triangle read by rows, truncated rows of the array in A185973.
Reversal of A077011.

Examples

			Triangle begins:
      1;
      3,     2;
     15,    10,    6;
    105,    70,   42,   30;
   1155,   770,  462,  330,  210;
  15015, 10010, 6006, 4290, 2730, 2310;
  ...
		

Crossrefs

Row sums: A024451.
T(n,1) = A070826(n).
T(n,n) = A002110(n-1).
For 2 <= n <= 9, T(n,2) = A118752(n-2). [corrected by Peter Munn, Jan 13 2018]
T(n,k) = A121281(n,k), but the latter has an extra column (0).

Programs

  • Maple
    T:= n-> (m-> seq(m/ithprime(j), j=1..n))(mul(ithprime(i), i=1..n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, Jun 18 2015
  • Mathematica
    T[1, 1] = 1; T[n_, n_] := T[n, n] = Prime[n-1]*T[n-1, n-1];
    T[n_, k_] := T[n, k] = Prime[n]*T[n-1, k];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)

Formula

T(1,1) = 1, T(n,k) = A000040(n)*T(n-1,k) for k < n, T(n,n) = A000040(n-1) * T(n-1,n-1).

A340467 a(n) is the n-th squarefree number having n prime factors.

Original entry on oeis.org

2, 10, 66, 462, 4290, 53130, 903210, 17687670, 406816410, 11125544430, 338431883790, 11833068917670, 457077357006270, 20384767656323070, 955041577211912190, 49230430891074322890, 2740956243836856315270, 168909608387276001835590, 11054926927790884163355330
Offset: 1

Views

Author

Alois P. Heinz, Jan 08 2021

Keywords

Comments

a(n) is the n-th product of n distinct primes.
All terms are even.
This sequence differs from A073329 which has also nonsquarefree terms.

Examples

			a(1) = A000040(1) = 2.
a(2) = A006881(2) = 10.
a(3) = A007304(3) = 66.
a(4) = A046386(4) = 462.
a(5) = A046387(5) = 4290.
a(6) = A067885(6) = 53130.
a(7) = A123321(7) = 903210.
a(8) = A123322(8) = 17687670.
a(9) = A115343(9) = 406816410.
a(10) = A281222(10) = 11125544430.
		

Crossrefs

Programs

  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A340467(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 31 2024

Formula

a(n) = A340316(n,n).
a(n) = A005117(m) <=> A072047(m) = n = A340313(m).
A001221(a(n)) = A001222(a(n)) = n.
a(n) < A070826(n+1), the least odd number with exactly n distinct prime divisors.

A346424 Number of partitions of the 2n-multiset {0,...,0,1,2,...,n}.

Original entry on oeis.org

1, 2, 11, 74, 592, 5317, 52902, 572402, 6670707, 83025806, 1096662664, 15292076689, 224145880470, 3440981816071, 55153081768896, 920494136057715, 15959177281931953, 286834809549486462, 5334308665713522860, 102476857445135062727, 2030589375575413246579
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2021

Keywords

Comments

Also number of factorizations of 2^n * Product_{i=1..n} prime(i+1); a(2) = 11: 2*2*3*5, 3*4*5, 2*5*6, 6*10, 2*3*10, 5*12, 4*15, 2*2*15, 3*20, 2*30, 60.

Examples

			a(0) = 1: {}.
a(1) = 2: 01, 0|1.
a(2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= proc(n, k) option remember; coeff(s(n), x, k) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
          combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
        end:
    a:= n-> add(S(n, j)*b(n, j), j=0..n):
    seq(a(n), n=0..21);
  • Mathematica
    s[n_] := s[n] = Expand[If[n == 0, 1,
         x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
    S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0,
         PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
    a[n_] := Sum[S[n, j]*b[n, j], {j, 0, n}];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 06 2022, after Alois P. Heinz *)

Formula

a(n) = A001055(A000079(n)*A070826(n+1)).
a(n) = Sum_{j=0..n} A048993(n,j)*A292508(n,j+1).
a(n) = A346426(n,n).

A346519 Number of partitions of the 2n-multiset {0,...,0,1,2,...,n} into distinct multisets.

Original entry on oeis.org

1, 2, 9, 59, 442, 3799, 36332, 379831, 4288933, 51867573, 667168482, 9076862555, 130018298663, 1953284957029, 30675458303547, 502166867458649, 8547908294767932, 150965367603029126, 2760941474553823577, 52196915577464262360, 1018499212583077293854
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2021

Keywords

Comments

Also number of factorizations of 2^n * Product_{i=1..n} prime(i+1) into distinct factors; a(2) = 9: 3*4*5, 2*5*6, 6*10, 2*3*10, 5*12, 4*15, 3*20, 2*30, 60.

Examples

			a(0) = 1: {}.
a(1) = 2: 01, 0|1.
a(2) = 9: 00|1|2, 001|2, 1|002, 0|01|2, 0|1|02, 01|02, 00|12, 0|012, 0012.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    s:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= proc(n, k) option remember; coeff(s(n), x, k) end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i=0, g(n), add(b(n-j, i-1), j=0..n)))
        end:
    a:= n-> add(S(n, j)*b(n, j), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
    s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
    S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
    a[n_] := Sum[S[n, j]*b[n, j], {j, 0, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 06 2022, after Alois P. Heinz *)

Formula

a(n) = A045778(A000079(n)*A070826(n+1)).
a(n) = Sum_{j=0..n} Stirling2(n,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000009(n-i).
a(n) = A346520(n,n).

A346521 Total number of partitions of all n-multisets {0,...,0,1,2,...,j} into distinct multisets for 0 <= j <= n.

Original entry on oeis.org

1, 2, 5, 15, 46, 161, 624, 2669, 12483, 63261, 344631, 2005058, 12390086, 80945545, 556896913, 4021109557, 30382294412, 239589006143, 1967343509525, 16786587081641, 148561276135546, 1361378815644787, 12897870827339021, 126158299918183469, 1272377007364596242
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2021

Keywords

Comments

Also total number of factorizations of 2^(n-j) * Product_{i=1..j} prime(i+1) into distinct factors for 0 <= j <= n; a(2) = 5: 4, 2*3, 6, 3*5, 15; a(3) = 15: 2*4, 8, 3*4, 2*6, 12, 2*3*5, 5*6, 3*10, 2*15, 30, 3*5*7, 7*15, 5*21, 3*35, 105.

Examples

			a(2) = 5: 00, 01, 0|1, 12, 1|2.
a(3) = 15: 000, 0|00, 001, 00|1, 0|01, 012, 0|12, 02|1, 01|2, 0|1|2, 123, 1|23, 13|2, 12|3, 1|2|3.
		

Crossrefs

Antidiagonal sums of A346520.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    s:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= proc(n, k) option remember; coeff(s(n), x, k) end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i=0, g(n), add(b(n-j, i-1), j=0..n)))
        end:
    A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
    a:= n-> add(A(n-j, j), j=0..n):
    seq(a(n), n=0..24);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
    s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
    S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
    A[n_, k_] := Sum[S[k, j]*b[n, j], {j, 0, k}];
    a[n_] := Sum[A[n - j, j], {j, 0, n}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 31 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=0..n} A346520(n-j,j).
a(n) = Sum_{j=0..n} A045778(A000079(n-j)*A070826(j+1)).

A083339 a(n) is the number of distinct prime factors of n that occur in partitions into two primes when n is even and into three primes when n is odd.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 2, 0, 0, 0, 2, 0, 2, 1, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 24 2003

Keywords

Comments

Number of distinct prime factors of n that occur in prime-partitions confirming Goldbach's conjectures. (The original name of this sequence.)
Conjecture: Apart from k=2, A070826(k): 1, 3, 15, 105, 1155, 15015, 255255, gives the positions of records (each equal to k-1). This follows from the conjectured formula. - Antti Karttunen, Sep 14 2017

Examples

			For n = 14 = 2*7 = 3 + 11 = 7 + 7, only one factor of 14 occurs, thus a(14) = 1.
For n = 15 = 3*5 = 2 + 2 + 11 = 3 + 5 + 7 = 5 + 5+ 5, both factors of 15 occur, thus a(15) = 2.
For n = 105 = 3*5*7, with 35 different partitions into three primes, the partition 97 + 5 + 3 contains the prime factors 3 and 5, while the partition 79 + 19 + 7 contains 7, thus all three prime factors of 115 occur and a(115) = 3.
For n = 1155 = 3*5*7*11, among 891 different partitions into three primes, the following four partitions: 1129 + 23 + 3 = 1129 + 19 + 7 = 1109 + 41 + 5 = 1103 + 41 + 11 each have either 3, 5, 7 or 11 as one of their parts, thus a(1155) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[Union@ Flatten@ Select[IntegerPartitions[n, {2 + Boole[OddQ@ n]}], AllTrue[#, PrimeQ] &], p_ /; Divisible[n, p]], {n, 105}] (* Michael De Vlieger, Sep 16 2017 *)

Formula

If n is even, a(n) = A010051(n/2), if n is an odd prime, a(n) = 0, and for odd composites (conjecturally), a(n) = A001221(n). - Antti Karttunen, Sep 14 2017

Extensions

Name edited and two further examples added by Antti Karttunen, Sep 14 2017
Previous Showing 51-60 of 88 results. Next