cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A369212 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2+x^3) ).

Original entry on oeis.org

1, 2, 5, 15, 50, 177, 652, 2473, 9594, 37892, 151846, 615859, 2523217, 10427471, 43415259, 181941198, 766841846, 3248517320, 13823977350, 59067577266, 253315964424, 1089998388418, 4704475230340, 20361365646315, 88351705071583, 384280788724692, 1675063399090659
Offset: 0

Views

Author

Seiichi Manyama, Jan 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2+x^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(2*n-2*k+2, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(2*n-2*k+2,n-3*k).

A361932 G.f. A(x) satisfies A(x) = 1 + (x * A(x) / (1 - x))^3.

Original entry on oeis.org

1, 0, 0, 1, 3, 6, 13, 33, 84, 208, 522, 1341, 3476, 9042, 23673, 62426, 165504, 440664, 1178168, 3162357, 8517681, 23013294, 62356329, 169408107, 461366499, 1259311824, 3444497550, 9439766700, 25916832981, 71274793968, 196325540206, 541579442133
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A071879.

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-1, n-3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-1,n-3*k) * binomial(3*k,k) / (2*k+1).

A369481 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^3)) ).

Original entry on oeis.org

1, 2, 5, 15, 51, 187, 718, 2844, 11530, 47612, 199576, 847013, 3632468, 15717041, 68527255, 300780438, 1327939406, 5893299392, 26275243626, 117635107818, 528631769323, 2383660351991, 10781500113896, 48903885040638, 222400899237943, 1013841791472632
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^3)))/x)
    
  • PARI
    a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(2*n-k+2,n-3*k).

A369482 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^3)) ).

Original entry on oeis.org

1, 3, 12, 56, 287, 1564, 8895, 52195, 313655, 1920489, 11938271, 75143016, 477948051, 3067190311, 19835032603, 129129612163, 845603794947, 5566269982581, 36810651063798, 244448822313138, 1629413356387998, 10898124891668031, 73116947514706451
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x+x^3)))/x)
    
  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(3*n-k+3,n-3*k).

A378849 a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 48, 120, 309, 787, 2011, 5215, 13652, 35894, 94823, 251889, 672285, 1801185, 4842757, 13064059, 35349463, 95912989, 260896318, 711338596, 1943690464, 5321704006, 14597781706, 40112702176, 110404515703, 304338523999, 840140172621, 2322386563353
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 09 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$3, 3][n+1],
          (2*(8*n^3+3*n^2-25*n-6)*a(n-1)-2*(n-1)*(12*n^2-9*n-10)*
           a(n-2)+(43*n+13)*(n-1)*(n-2)*a(n-3)-31*(n-1)*(n-2)*
            (n-3)*a(n-4))/(2*(2*n+3)*(n+3)*(n-2)))
        end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Dec 09 2024
  • PARI
    a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+1, k)/(k+1)) \\ Thomas Scheuerle, Dec 09 2024

Formula

a(n) = hypergeom([4/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 3/2, 2], -27/4). - Peter Luschny, Dec 18 2024

Extensions

More terms from Alois P. Heinz, Dec 09 2024

A378850 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -2.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 73, 190, 505, 1316, 3431, 9065, 24122, 64325, 172082, 462344, 1246685, 3371135, 9140289, 24847422, 67708743, 184906614, 505986933, 1387240401, 3810083424, 10481797131, 28880894706, 79692785251, 220203155689, 609242057143, 1687666776031
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 09 2024

Keywords

Examples

			For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0).
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([4/3, 5/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 2/3, 5/2, 2], -27/4):
    seq(simplify(a(n)), n = 0..30);  # Peter Luschny, Dec 18 2024
  • PARI
    a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+3, k+1)/(2*k+3)) \\ Thomas Scheuerle, Dec 09 2024

A127905 Construct triangle in which n-th row is obtained by expanding (1+x+x^3)^n and take the next-to-central column.

Original entry on oeis.org

0, 1, 2, 3, 8, 25, 66, 168, 456, 1269, 3490, 9581, 26544, 73944, 206220, 576045, 1613264, 4527661, 12725946, 35818135, 100950440, 284869263, 804726934, 2275500998, 6440230392, 18242735800, 51714552656
Offset: 0

Views

Author

Paul Barry, Feb 05 2007

Keywords

Crossrefs

Cf. A005717.

Programs

  • Magma
    [0] cat [n*(&+[Binomial(n-1,3*k)*Binomial(3*k,k)/(2*k+1): k in [0..Floor((n-1)/3)]]): n in [1..30]]; // G. C. Greubel, Apr 30 2018
  • Maple
    A127905 := proc(n)
        n*add(binomial(n-1,3*k)*binomial(3*k,k)/(2*k+1),k=0..floor((n-1)/3)) ;
    end proc: # R. J. Mathar, Feb 23 2015
  • Mathematica
    Table[n*Sum[Binomial[n-1,3*k]*Binomial[3*k,k]/(2*k+1), {k, 0, Floor[(n -1)/3]}], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff((1+x+x^3)^n, n-1));
    
  • PARI
    a(n)=if(n<0, 0, n++; n*polcoeff(serreverse(x/(1+x+x^3)+x*O(x^n)), n))
    

Formula

a(n) = n*A071879(n-1).
a(n) = n*Sum_{k=0..floor((n-1)/3)} C(n-1,3*k)*C(3*k,k)/(2*k+1).
a(n) = Sum_{k=0..floor((n-1)/3)} (3*k+1)*C(n,3*k+1)*C(3*k,k)/(2k+1).
a(n) = Sum_{k=0..n-1} Sum_{j=0..floor(k/3)} C(k,3*j)*C(3*j+1,j).
Conjecture: 2*(2*n+1)*(n-1)^2*a(n) -2*n*(6*n^2-12*n+5)*a(n-1) +6*n*(n-1)*(2*n-3)*a(n-2) -31*n*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Feb 23 2015
a(n) ~ (1 + 3/2^(2/3))^(n + 1/2) / sqrt(12*Pi*n). - Vaclav Kotesovec, May 01 2018

Extensions

Edited by Charles R Greathouse IV, Oct 28 2009

A364539 G.f. satisfies A(x) = 1 + x*A(x) + x^3*A(x)^5.

Original entry on oeis.org

1, 1, 1, 2, 7, 22, 62, 182, 583, 1928, 6358, 21063, 70888, 241889, 831634, 2874584, 9995579, 34966279, 122938956, 434062141, 1538378816, 5471697241, 19525345791, 69880082323, 250767909528, 902123110483, 3252793321513, 11753570922933, 42553831219830
Offset: 0

Views

Author

Seiichi Manyama, Jul 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+2*k, 5*k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n+2*k,5*k) * binomial(5*k,k) / (4*k+1).

A365252 G.f. satisfies A(x) = 1 + x*A(x)*(1 + x^4*A(x)^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 60, 106, 205, 418, 851, 1685, 3257, 6264, 12210, 24276, 48920, 98873, 199118, 399472, 801361, 1613713, 3266772, 6640770, 13526547, 27564804, 56183565, 114612879, 234187293, 479442918, 983236998, 2018936664, 4149222198
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(n-2*k+1, n-4*k)/(n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * binomial(n-2*k+1,n-4*k)/(n-2*k+1).

A379462 a(n) is the total number of paths starting at (0, 0), ending at (n, 0), consisting of steps (1, 1), (1, 0), (1, -2), and staying on or above y = -3.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 75, 204, 561, 1499, 4001, 10814, 29364, 79704, 216672, 590764, 1614421, 4419049, 12116139, 33277722, 91546143, 252209535, 695803659, 1922166420, 5316714156, 14723570406, 40820144106, 113293243636, 314759548879, 875342190283, 2436582442381
Offset: 0

Views

Author

Emely Hanna Li Lobnig, Dec 23 2024

Keywords

Examples

			For n = 3, the a(3)=4 paths are DUU, HHH, UDU, UUD, where U=(1,1), D=(1,-2) and H=(1,0). An example of a path with these steps, but not staying on or above y = -3, is for n=6: DDUUUU.
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(v=vector(nn+5), w); print1(v[4]=1); for(n=1, nn, w=v; for(i=1, n+3, w[i]+=v[i+2]; w[i+1]+=v[i]); v=w; print1(", ", v[4])); \\ Jinyuan Wang, Jan 07 2025

Formula

a(n) = Sum_{k=0..floor(n/3)} 2*binomial(n, k*3)*(binomial(3*k+3, k)/(k+2) - binomial(3*k, k-1)/(k+1)). - Thomas Scheuerle, Jan 07 2025
a(n) ~ 23 * (1 + 3/2^(2/3))^(n + 3/2) / (4 * sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 15 2025

Extensions

More terms from Jinyuan Wang, Jan 07 2025
Previous Showing 11-20 of 20 results.