cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A367573 Long legs of the only primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.

Original entry on oeis.org

12, 24, 60, 112, 264, 364, 612, 760, 1104, 1740, 1984, 2812, 3444, 3784, 4512, 5724, 7080, 7564, 9112, 10224, 10804, 12640, 13944, 16020, 19012, 20604, 21424, 23112, 23980, 25764, 32512, 34584, 37812, 38920, 44700, 45904, 49612, 53464, 56112, 60204, 64440
Offset: 1

Views

Author

Keywords

Comments

See Ejercicio 2.7. of García-Ortega.

Examples

			Triangles begin
   5,  12,  13;
   7,  24,  25;
  11,  60,  61;
  15, 112, 113;
  23, 264, 265;
  ...
Row n = (a, b, c) = (2*p + 1, 2*p^2 + 2*p, 2*p^2 + 2*p + 1), where p is the n-th prime number.
This sequence is the middle column.
		

Crossrefs

Cf. A072055 (short leg).

Formula

a(n) = 2*p^2 + 2*p where p is prime(n).

A072056 Number of divisors of 2*prime(n)+1.

Original entry on oeis.org

2, 2, 2, 4, 2, 4, 4, 4, 2, 2, 6, 6, 2, 4, 4, 2, 4, 4, 8, 4, 6, 4, 2, 2, 8, 4, 6, 4, 4, 2, 8, 2, 6, 6, 4, 4, 12, 4, 4, 2, 2, 6, 2, 6, 4, 8, 6, 4, 8, 8, 2, 2, 8, 2, 4, 4, 6, 4, 8, 2, 10, 2, 8, 4, 8, 4, 8, 12, 4, 4, 4, 2, 12, 6, 8, 4, 4, 8, 4, 12, 2, 4, 2, 6, 4, 2, 4, 8, 4, 6, 8, 4, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Examples

			Divisors of A072055(8) = 2*A000040(8)+1 = 2*19+1=39: {1,3,13,39} with size 4, therefore a(8) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,2Prime[n]+1],{n,100}] (* Harvey P. Dale, Apr 12 2021 *)
  • PARI
    a(n) = numdiv(2*prime(n)+1); \\ Amiram Eldar, Apr 26 2024
    
  • PARI
    lista(pmax) = forprime(p = 2, pmax, print1(numdiv(2*p+1), ", ")); \\ Amiram Eldar, Apr 26 2024

Formula

a(n) = A000005(A072055(n)).

A306190 a(n) = p^2 - p - 1 where p = prime(n), the n-th prime.

Original entry on oeis.org

1, 5, 19, 41, 109, 155, 271, 341, 505, 811, 929, 1331, 1639, 1805, 2161, 2755, 3421, 3659, 4421, 4969, 5255, 6161, 6805, 7831, 9311, 10099, 10505, 11341, 11771, 12655, 16001, 17029, 18631, 19181, 22051, 22649, 24491, 26405, 27721, 29755, 31861, 32579, 36289
Offset: 1

Views

Author

Kritsada Moomuang, Jan 28 2019

Keywords

Comments

Terms are divisible by 5 iff p is of the form 10*m + 3 (A030431).

Examples

			a(3) = 19 because 5^2 - 5 - 1 = 19.
		

Crossrefs

Supersequence of A091568.
Subsequence of A028387 or A165900.
Second column of A378979.
A039914 is an essentially identical sequence.

Programs

  • Maple
    map(p -> p^2-p-1, [seq(ithprime(i),i=1..100)]); # Robert Israel, Mar 11 2019
  • Mathematica
    Table[Prime[n]^2-Prime[n]-1, {n, 1, 100}] (* Jinyuan Wang, Feb 02 2019 *)
  • PARI
    a(n) = {p=prime(n);p^2-p-1;} \\ Jinyuan Wang, Feb 02 2019

Formula

a(n) = A036689(n) - 1.
a(n) = A036690(n) - A072055(n).
a(n) = A060800(n) - A089241(n).
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065488.
Product_{n>=2} (1 - 1/a(n)) = A065479. (End)
a(n) = A033879(A001248(n)). [Deficiency of squares of primes] - Antti Karttunen, Dec 13 2024

A023591 Greatest exponent in prime-power factorization of 2*prime(n)+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A023591 := proc(n)
        A051903(2*ithprime(n)+1) ;
    end proc: # R. J. Mathar, Jul 08 2015
  • Mathematica
    a[n_] := Max[FactorInteger[2*Prime[n] + 1][[;;, 2]]]; Array[a, 100] (* Amiram Eldar, Sep 09 2024 *)
  • PARI
    a(n) = vecmax(factor(2*prime(n)+1)[,2]); \\ Michel Marcus, Apr 20 2021

Formula

a(n) = A051903(A072055(n)). - Amiram Eldar, Sep 09 2024

A023593 Exponent of least prime factor of 2*prime(n)+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			a(6) = 3 because 2*prime(6)+1 = 27 = 3^3.
		

Crossrefs

Programs

Extensions

Corrected by Clark Kimberling, Oct 01 2013

A072058 Squarefree kernel of 2*prime(n)+1.

Original entry on oeis.org

5, 7, 11, 15, 23, 3, 35, 39, 47, 59, 21, 15, 83, 87, 95, 107, 119, 123, 15, 143, 21, 159, 167, 179, 195, 203, 69, 215, 219, 227, 255, 263, 55, 93, 299, 303, 105, 327, 335, 347, 359, 33, 383, 129, 395, 399, 141, 447, 455, 51, 467, 479, 483, 503
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Examples

			n = 12: 2*A000040(12)+1 = 2*37+1 = 75 and as A007947(75) = A007947(7*5*5) = 15: a(12) = 15.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;;,1]]; rad /@ (2 * Select[Range[250], PrimeQ] + 1) (* Amiram Eldar, Sep 07 2020 *)

Formula

a(n) = A007947(A072055(n)).

A072059 Smallest prime p such that 2*p+1 has n distinct prime factors.

Original entry on oeis.org

2, 7, 97, 577, 7507, 217717, 5232727, 75172597, 1617423307, 59844662377, 2750790860317, 109455887488447, 4621264673452927, 218071376383127767, 10914293640945722527, 662082573402158125717, 41249727342503299116997
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 11 2002

Keywords

Comments

Note that for each n=1,...,8, the product of the smallest n-1 distinct prime factors of 2*a(n)+1 is p(n)#/2, where p(n)# is the primorial (A002110) of the n-th prime - and the n-th distinct prime factor >= p(n+1). - Rick L. Shepherd, Jul 06 2002

Examples

			a(4)=577=A000040(106): 2*577+1 = 1155 = 11*7*5*3, 4 distinct factors.
		

Crossrefs

Programs

  • PARI
    for (n=1,8, p=1; until(isprime(p) && omega(2*p+1)==n, p++); print1(p,","))

Extensions

More terms from Rick L. Shepherd, Jul 06 2002
More terms from Don Reble, Apr 15 2003

A289108 Triangle read by rows: T(n,k) = (k + 1)*prime(n) + k for n > 0, 0 <= k <= n, and with T(0,0) = 1.

Original entry on oeis.org

1, 2, 5, 3, 7, 11, 5, 11, 17, 23, 7, 15, 23, 31, 39, 11, 23, 35, 47, 59, 71, 13, 27, 41, 55, 69, 83, 97, 17, 35, 53, 71, 89, 107, 125, 143, 19, 39, 59, 79, 99, 119, 139, 159, 179, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 29, 59, 89, 119, 149, 179, 209, 239, 269, 299, 329
Offset: 0

Views

Author

Vincenzo Librandi, Sep 02 2017

Keywords

Examples

			Triangle begins:
   1;
   2,   5;
   3,   7,  11;
   5,  11,  17,  23;
   7,  15,  23,  31,  39;
  11,  23,  35,  47,  59,  71;
  13,  27,  41,  55,  69,  83,  97;
  17,  35,  53,  71,  89, 107, 125, 143;
  19,  39,  59,  79,  99, 119, 139, 159, 179;
  23,  47,  71,  95, 119, 143, 167, 191, 215, 239;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle (here NthPrime(0)=1) */ [[(k+1)*NthPrime(n)+k: k in [0..n]]: n in [0.. 15]];
    
  • Mathematica
    Join[{1}, T[n_,k_] := (k + 1) Prime[n] + k; Table[T[n, k], {n, 10}, {k, 0, n}]//Flatten]
  • SageMath
    def A289108(n,k): return 1 if n==0 else (k+1)*nth_prime(n) +k
    flatten([[A289108(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 04 2024

Extensions

Definition corrected by Bruno Berselli, Sep 06 2017

A166496 Prime plus the next composite.

Original entry on oeis.org

6, 7, 11, 15, 23, 27, 35, 39, 47, 59, 63, 75, 83, 87, 95, 107, 119, 123, 135, 143, 147, 159, 167, 179, 195, 203, 207, 215, 219, 227, 255, 263, 275, 279, 299, 303, 315, 327, 335, 347, 359, 363, 383, 387, 395, 399, 423, 447, 455, 459, 467, 479, 483, 503, 515, 527
Offset: 1

Views

Author

Zak Seidov, Oct 15 2009

Keywords

Comments

Differs from A072055 in the first term.

Examples

			a(1)=2+4=6,
a(2)=3+4=7,
a(3)=5+6=11.
		

Crossrefs

Cf. A072055.

Programs

  • Mathematica
    Prepend[2*Prime[Range[2,100]]+1,6]

Formula

a(n)=prime(n)+smallest composite > prime(n).

A363700 a(n) = phi(2*prime(n)+1).

Original entry on oeis.org

4, 6, 10, 8, 22, 18, 24, 24, 46, 58, 36, 40, 82, 56, 72, 106, 96, 80, 72, 120, 84, 104, 166, 178, 96, 168, 132, 168, 144, 226, 128, 262, 200, 180, 264, 200, 144, 216, 264, 346, 358, 220, 382, 252, 312, 216, 276, 296, 288, 288, 466, 478, 264, 502, 408, 480, 420, 360, 288, 562
Offset: 1

Views

Author

Alain Rocchelli, Jun 16 2023

Keywords

Comments

2*prime(n)+1 is prime iff a(n) = 2*prime(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[2*Prime[n] + 1]; Array[a, 100] (* Amiram Eldar, Jun 16 2023 *)
  • PARI
    a(n)=eulerphi(2*prime(n)+1)

Formula

a(n) = A000010(A072055(n)).
a(n) = A037225(A000040(n)).
Previous Showing 11-20 of 23 results. Next