A367573 Long legs of the only primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.
12, 24, 60, 112, 264, 364, 612, 760, 1104, 1740, 1984, 2812, 3444, 3784, 4512, 5724, 7080, 7564, 9112, 10224, 10804, 12640, 13944, 16020, 19012, 20604, 21424, 23112, 23980, 25764, 32512, 34584, 37812, 38920, 44700, 45904, 49612, 53464, 56112, 60204, 64440
Offset: 1
Examples
Triangles begin 5, 12, 13; 7, 24, 25; 11, 60, 61; 15, 112, 113; 23, 264, 265; ... Row n = (a, b, c) = (2*p + 1, 2*p^2 + 2*p, 2*p^2 + 2*p + 1), where p is the n-th prime number. This sequence is the middle column.
Links
- Miguel-Ángel Pérez García-Ortega, Capítulo 2. Inradio, El Libro de las Ternas Pitagóricas.
Crossrefs
Cf. A072055 (short leg).
Formula
a(n) = 2*p^2 + 2*p where p is prime(n).
Comments