cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A048102 Numbers k such that if k = Product p_i^e_i then p_i = e_i for all i.

Original entry on oeis.org

1, 4, 27, 108, 3125, 12500, 84375, 337500, 823543, 3294172, 22235661, 88942644, 2573571875, 10294287500, 69486440625, 277945762500, 285311670611, 1141246682444, 7703415106497, 30813660425988, 302875106592253, 891598970659375, 1211500426369012, 3566395882637500
Offset: 1

Views

Author

Keywords

Examples

			3^3*5^5 = 84375.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (empty, fromList, deleteFindMin, union)
    import qualified Data.Set as Set (null, map)
    a048102 n = a048102_list !! (n-1)
    a048102_list = 1 : f empty [1] a051674_list where
      f s ys pps'@(pp:pps)
        | Set.null s = f (fromList (map (* pp) ys)) (pp:ys) pps
        | pp < m     = f (s `union` Set.map (* pp) s `union`
                          fromList (map (* pp) ys)) ys pps
        | otherwise  = m : f s' (m:ys) pps'
        where (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Jan 21 2012
    
  • PARI
    isok(n) = my(f = factor(n)); for (k=1, #f~, if (f[k,1] != f[k,2], return(0))); 1; \\ Michel Marcus, Apr 29 2016

Formula

A027748(a(n),k) = A124010(a(n),k) for k = 1 .. A001221(a(n)). - Reinhard Zumkeller, Jan 21 2012
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^p) = 1.2967126856... - Amiram Eldar, Oct 13 2020

Extensions

More terms from Naohiro Nomoto, Jun 28 2001

A083346 Denominator of r(n) = Sum(e/p: n=Product(p^e)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 3, 10, 11, 3, 13, 14, 15, 1, 17, 6, 19, 5, 21, 22, 23, 6, 5, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 3, 37, 38, 39, 10, 41, 42, 43, 11, 15, 46, 47, 3, 7, 10, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 21, 1, 65, 66, 67, 17, 69, 70, 71, 6, 73, 74, 15, 19, 77, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

Multiplicative with a(p^e) = 1 iff p|e, p otherwise. For f(n) = A083345(n)/A083346(n), f(p^i*q^j*...) = f(p^i)+f(q^j)+ ... The denominator of each term is 1 or the prime, thus the denominator of the sum is the product of the denominators of the components. - Christian G. Bower, May 16 2005
n divided by the greatest common divisor of n and its arithmetic derivative, i.e., a(n) = n/gcd(n,n') = A000027(n)/A085731(n). - Giorgio Balzarotti, Apr 14 2011

Examples

			n=12 = 2*2*3 = 2^2 * 3^1 -> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12)=3, A083345(12)=4;
n=18 = 2*3*3 = 2^1 * 3^2 -> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18)=6, A083345(18)=7.
		

Crossrefs

Cf. A083345 (numerator).
Cf. A035263 (parity of terms), A003159 (positions of odd terms), A036554 (of even terms).
Cf. A065463, A072873, A083347, A083348, A359588 (Dirichlet inverse).

Programs

  • Mathematica
    a[n_] := Product[Module[{p, e}, {p, e} = pe; If[Divisible[e, p], 1, p]], {pe, FactorInteger[n]}];
    Array[a, 100] (* Jean-François Alcover, Oct 06 2021 *)
  • PARI
    A083346(n) = { my(f=factor(n)); denominator(vecsum(vector(#f~,i,f[i,2]/f[i,1]))); }; \\ Antti Karttunen, Mar 01 2018

Formula

Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 * Product_{p prime} (p^(2*p)*(p^2+p-1)-p^3)/((p^2+p-1)*(p^(2*p)-1)) = 0.3374565531... . - Amiram Eldar, Nov 18 2022

Extensions

Incorrect formula removed by Antti Karttunen, Jan 09 2023

A327939 Multiplicative with a(p^e) = p^(e-(e mod p)).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 27, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 1, 64, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 108, 1, 1, 1, 16
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Comments

Fixed points of the map x -> gcd(x, A003415(x)), i.e., if we start iterating with A085731 from any x = n (>= 1), we will eventually reach a(n), after which the result does not change anymore. This was found by LODA miner (see C. Krause link), and is easily seen to be true by Eric M. Schmidt's multiplicative formula for A085731. Note also that this sequence is idempotent, meaning a(a(n)) = a(n) for all n. - Antti Karttunen, Apr 05 2021
The largest divisor of n that is a term of A072873. - Amiram Eldar, Sep 14 2023

Crossrefs

Differs from A234957 for the first time at n=27.

Programs

  • Mathematica
    f[p_, e_] := p^(e - Mod[e, p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2023 *)
  • PARI
    A327939(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]-(f[k,2]%f[k,1]))); factorback(f); };

Formula

Multiplicative with a(p^e) = p^(e-(e mod p)).
a(n) = n / A327938(n).

A083347 Numbers k such that Sum(e/p: k=Product(p^e)) < 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

Numbers k whose arithmetic derivative (A003415) k' < k. - T. D. Noe, Apr 24 2011

Crossrefs

Programs

  • Haskell
    a083347 n = a083347_list !! (n-1)
    a083347_list = filter ((< 0) . a168036) [1..]
    -- Reinhard Zumkeller, May 22 2015, May 10 2011
  • Mathematica
    Select[Range@ 102, If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger@ Abs@ #]] < # &] (* Michael De Vlieger, Feb 02 2019 *)

Formula

A083345(a(n)) < A083346(a(n));
A168036(a(n)) < 0. - Reinhard Zumkeller, May 22 2015

A083348 Numbers k such that r(k) = Sum(e/p: k = Product(p^e)) > 1.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 198
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

The number of terms not exceeding 10^m, for m = 1, 2, ..., are 1, 29, 318, 3174, 31763, 317813, 3177179, 31774009, 317745099, 3177373819, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3177... . - Amiram Eldar, Jun 24 2022

Crossrefs

Cf. A003415, A072873, A051674, A083345, A083346, A083347, A168036, A369048 (characteristic function), A369049.
Subsequence of A100717.

Programs

  • Haskell
    a083348 n = a083348_list !! (n-1)
    a083348_list = filter ((> 0) . a168036) [1..]
    -- Reinhard Zumkeller, May 22 2015, May 10 2011
  • Mathematica
    ad[n_] := Switch[n, 0 | 1, 0, _, If[PrimeQ[n], 1, Sum[Module[ {p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
    Select[Range[1000], ad[#] > # &] (* Jean-François Alcover, May 04 2023 *)

Formula

A083345(a(n)) > A083346(a(n)).
A168036(a(n)) > 0. - Reinhard Zumkeller, May 22 2015

A342014 Arithmetic derivative of n, taken modulo n: a(n) = A003415(n) mod n.

Original entry on oeis.org

0, 1, 1, 0, 1, 5, 1, 4, 6, 7, 1, 4, 1, 9, 8, 0, 1, 3, 1, 4, 10, 13, 1, 20, 10, 15, 0, 4, 1, 1, 1, 16, 14, 19, 12, 24, 1, 21, 16, 28, 1, 41, 1, 4, 39, 25, 1, 16, 14, 45, 20, 4, 1, 27, 16, 36, 22, 31, 1, 32, 1, 33, 51, 0, 18, 61, 1, 4, 26, 59, 1, 12, 1, 39, 55, 4, 18, 71, 1, 16, 27, 43, 1, 40, 22, 45, 32, 52, 1, 33
Offset: 1

Views

Author

Antti Karttunen, Mar 04 2021

Keywords

Crossrefs

Cf. A003415, A072873 (positions of zeros), A085731 [= gcd(n, a(n))], A342015 [= A342014(A276086(n))].

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342014(n) = (A003415(n)%n);

Formula

a(n) = A003415(n) mod n.

A342090 Numbers with at least one prime power p^e in their prime factorization such that p|e.

Original entry on oeis.org

4, 12, 16, 20, 27, 28, 36, 44, 48, 52, 54, 60, 64, 68, 76, 80, 84, 92, 100, 108, 112, 116, 124, 132, 135, 140, 144, 148, 156, 164, 172, 176, 180, 188, 189, 192, 196, 204, 208, 212, 216, 220, 228, 236, 240, 244, 252, 256, 260, 268, 270, 272, 276, 284, 292, 297, 300
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2021

Keywords

Comments

Numbers with a unitary divisor of the form p^(m*p) where p is a prime and m > 0.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 19, 188, 1883, 18825, 188244, 1882429, 18824297, 188242957, 1882429628, ...
The asymptotic density of this sequence is 1 - Product_{p prime} 1 - (p - 1)/(p*(p^p - 1)) = 0.18824296270011399086...

Examples

			4 = 2^2 is a term since 2 divides 2.
8 = 2^3 is not a term since 2 does not divide 3.
		

Crossrefs

Subsequence of A013929.
Cf. A072873, A369070 (characteristic function).

Programs

  • Mathematica
    q[n_] := AnyTrue[FactorInteger[n], Divisible[Last[#], First[#]] &]; Select[Range[2, 300], q]

Extensions

Wrong term 1 removed by Amiram Eldar, Jan 16 2024

A368334 The number of terms of A054744 that are unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differs from A081117 at n = 28.
Also, the number of terms of A072873 that are unitary divisors of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, 2));}

Formula

Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = 2 if e >= p.
a(n) = A034444(A368333(n)).
a(n) = A034444(A327939(n)).
a(n) >= 1, with equality if and only if n is in A048103.
a(n) <= A034444(n), with equality if and only if n is in A054744.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(p*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^p) = 1.29671268566745796443... .

A165558 Integers that are half of their arithmetic derivatives.

Original entry on oeis.org

0, 16, 108, 729, 12500, 84375, 3294172, 9765625, 22235661, 2573571875, 678223072849, 1141246682444, 7703415106497, 891598970659375, 1211500426369012, 8177627877990831, 234966429149994773, 946484708100790625
Offset: 1

Views

Author

Keywords

Comments

All integers of the form p^p*q^q, with q and p two distinct primes, are in the sequence. [R. J. Mathar, Sep 26 2009]
6*10^8 < a(10) <= 2573571875. a(11) <= 678223072849. [Donovan Johnson, Nov 03 2010]
By a result of Ufnarovski and Ahlander, an integer is in this sequence if and only if it has the form p^(2p) or p^p*q^q, with p and q distinct primes. See comments from A072873. [Nathaniel Johnston, Nov 22 2010]

Examples

			For k =84375 = 3^3*5^5, so A003415(k)/2 = 84375*(3/3+5/5)/2 = 84375 = k, which adds k=84375 to the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(n)
    local a,i,p,pfs;
    for i from 1 to n do
      pfs:=ifactors(i)[2]; a:=i*add(op(2,p)/op(1,p),p=pfs);  if a=2*i then print(i); fi; od;
    end:
    P(100000000);
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Join[{0}, Reap[Do[p = Prime[n]; ip = p^(2*p); If[ip == d[ip]/2, Sow[ip]]; Do[q = Prime[k]; iq = p^p*q^q; If[iq == d[iq]/2, Sow[iq]], {k, n+1, 6}], {n, 1, 5}]][[2, 1]] // Union][[1 ;; 18]] (* Jean-François Alcover, Apr 22 2015, after Nathaniel Johnston *)

Formula

{n: A003415(n) = 2*n}.

Extensions

Entries checked by R. J. Mathar, Sep 26 2009
a(7)-a(9) from Donovan Johnson, Nov 03 2010
a(10)-a(18) and general form from Nathaniel Johnston, Nov 22 2010

A348284 Numbers k such that k | k" where k" is the 2nd arithmetic derivative of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 27, 29, 31, 37, 41, 43, 47, 48, 53, 54, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 108, 109, 113, 127, 128, 131, 137, 139, 149, 151, 157, 162, 163, 167, 168, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 09 2021

Keywords

Comments

As 1" = 0 and p" = 0 when p is prime, 1 and every prime are terms, hence A008578 is a subsequence. - Bernard Schott, Oct 12 2021

Examples

			8 is in the sequence since 8" = 16 and 8 | 16.
		

Crossrefs

Cf. A003415 (1st derivative), A068346 (2nd derivative).

Programs

  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    q:= n-> is(irem(d(d(n)), n)=0):
    select(q, [$1..250])[];  # Alois P. Heinz, Oct 15 2021
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(k) = !(ad(ad(k)) % k); \\ Michel Marcus, Oct 10 2021
Previous Showing 11-20 of 29 results. Next