cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A253299 Decimal expansion of integral_{x=0..1} x^(x^2) dx.

Original entry on oeis.org

8, 9, 6, 4, 8, 8, 7, 8, 1, 9, 2, 9, 6, 2, 3, 3, 4, 1, 3, 0, 0, 2, 3, 8, 5, 2, 0, 7, 9, 2, 5, 5, 0, 3, 6, 5, 9, 1, 8, 6, 2, 5, 0, 4, 6, 1, 9, 5, 3, 8, 1, 0, 3, 6, 6, 5, 6, 1, 9, 3, 9, 7, 2, 8, 7, 3, 5, 9, 5, 8, 8, 9, 0, 8, 1, 9, 1, 5, 8, 0, 4, 5, 9, 6, 7, 5, 4, 8, 3, 0, 7, 1, 7, 0, 1, 5, 3, 6, 6, 0, 8, 6, 6
Offset: 0

Views

Author

Jean-François Alcover, Dec 30 2014

Keywords

Examples

			0.896488781929623341300238520792550365918625...
		

References

  • Paul J. Nahin, Inside Interesting Integrals, Springer 2014, ISBN 978-1493912766.

Crossrefs

Programs

  • Mathematica
    NIntegrate[x^(x^2), {x, 0, 1}, WorkingPrecision -> 103] // RealDigits // First
  • PARI
    intnum(x=0,1, x^(x^2)) \\ Michel Marcus, Dec 30 2014

Formula

Equals sum_{n >= 0} (-1)^n/(2n + 1)^(n + 1).

A134878 Decimal expansion of Sum_{k>=1} 1/(k^2)^(k^2).

Original entry on oeis.org

1, 0, 0, 3, 9, 0, 6, 2, 5, 2, 5, 8, 1, 1, 7, 4, 7, 9, 1, 7, 6, 7, 4, 0, 7, 2, 9, 0, 6, 1, 4, 3, 0, 6, 7, 4, 1, 0, 7, 6, 1, 2, 4, 9, 2, 4, 3, 7, 9, 2, 8, 5, 9, 4, 7, 8, 7, 6, 4, 0, 4, 7, 9, 0, 7, 9, 5, 0, 9, 9, 2, 1, 9, 0, 5, 0, 8, 6, 9, 4, 4, 5, 1, 6, 6, 8, 8, 4, 0, 2, 7, 3, 4, 8, 3, 4, 4, 6, 9, 6, 6, 8, 8, 5
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Comments

Sum_{k>=1} 1/(k^2)^(k^2) = 1.003906252581174791767407290614306741076124924379285...

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^2)^(n^2), {n, 1, 30}], 200]][[1]]

Formula

Equals Sum_{n>=1} 1/A008972(n). - R. J. Mathar, Jul 31 2025

A134879 Decimal expansion of Sum_{k>=1} 1/(k^3)^(k^3).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5, 5, 1, 6, 5, 2, 3, 3, 7, 2, 8, 4, 5, 8, 8, 8, 8, 8, 3, 7, 9, 8, 9, 7, 5, 9, 3, 7, 6, 8, 3, 7, 2, 0, 8, 4, 9, 2, 0, 2, 8, 5, 0, 1, 1, 5, 8, 4, 6, 2, 0, 8, 2, 0, 3, 7, 4, 9, 4, 4, 6, 3, 3, 8, 5, 6, 0, 8, 4, 0, 0
Offset: 1

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Comments

Sum_{k>=1} 1/(k^3)^(k^3) = 1.00000005960464477539062500000000000000225516523372...

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(n^3)^(n^3), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(n=1,n^(-3*n^3)) \\ Charles R Greathouse IV, Dec 26 2011

A308915 Decimal expansion of Sum_{n>=1} 1/(log(n)^log(n)).

Original entry on oeis.org

6, 7, 1, 6, 9, 7, 0, 6, 1, 2, 9, 9, 0, 8, 9, 6, 0, 8, 8, 1, 4, 4, 5, 7, 9, 9, 8, 7, 2, 3, 2, 6, 0, 8, 8, 9, 1, 4, 5, 2, 7, 7, 2, 6, 1, 6, 5, 8, 8, 4, 5, 0, 4, 5, 8, 2, 6, 7, 0, 7, 5, 9, 2, 8, 4, 0, 5, 2, 4, 0, 2, 1, 8, 0, 6, 9, 3, 2, 5, 0, 9, 4, 3, 3, 5, 1, 1, 0, 0, 1, 8, 7, 5, 7, 2, 7, 6, 4, 2
Offset: 1

Views

Author

Bernard Schott, Jun 30 2019

Keywords

Comments

This series is convergent because n^2 * 1/log(n)^log(n) = exp(log(n) * (2 - log(log(n)))) which -> 0 as n -> oo.

Examples

			6.71697061299089608814457...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.1.i p. 279.

Crossrefs

Cf. A073009 (1/n^n), A099870 (1/n^log(n)), A099871 (1/log(n)^n).

Programs

  • Maple
    evalf(sum(1/(log(n)^log(n)), n=1..infinity), 110);
  • Mathematica
    RealDigits[N[1 + Sum[1/Log[n]^Log[n], {n, 2, Infinity}], 100]][[1]] (* Jinyuan Wang, Jul 25 2019 *)
  • PARI
    1 + sumpos(n=2, 1/(log(n)^log(n))) \\ Michel Marcus, Jun 30 2019

Formula

Equals Sum_{n>=1} 1/(log(n)^log(n)).

Extensions

More terms from Jon E. Schoenfield, Jun 30 2019
a(16)-a(24) from Jinyuan Wang, Jul 10 2019
More terms from Charles R Greathouse IV, Oct 21 2021

A359282 Decimal expansion of Integral_{x = 0..1} 1/x^(x^2) dx.

Original entry on oeis.org

1, 1, 1, 9, 5, 4, 5, 1, 2, 0, 1, 3, 6, 1, 2, 7, 5, 9, 6, 6, 1, 2, 6, 7, 6, 2, 4, 7, 0, 2, 9, 8, 2, 7, 0, 3, 6, 4, 6, 0, 0, 4, 6, 9, 5, 7, 8, 7, 6, 4, 2, 7, 6, 2, 8, 9, 8, 6, 7, 4, 9, 5, 4, 6, 7, 5, 7, 0, 9, 4, 4, 0, 8, 3, 4, 4, 3, 2, 8, 3, 9, 8, 7, 5, 6, 8, 6, 2, 6, 4, 5, 3, 8, 2, 0, 1, 0, 7, 7, 3, 0, 0, 5, 9, 7, 9, 9, 4
Offset: 1

Views

Author

Peter Bala, Dec 24 2022

Keywords

Examples

			1.119545120136127596612676247029827036460046957876427628986749 ...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(1/(2*n-1)^n, n = 1..infinity), 120);
  • Mathematica
    NIntegrate[x^(-x^2), {x, 0, 1}, WorkingPrecision -> 103] // RealDigits // First
  • PARI
    intnum(x = 0, 1, x^(-x^2))

Formula

Equals Sum_{n >= 1} 1/(2*n - 1)^n.
More generally, Integral_{x = 0..1} 1/x^(t*x^2) dx = Sum_{n >= 1} t^(n-1)/(2*n - 1)^n. See A253299 (case t = -1).

A061464 Denominator of 1/(1^1) + 1/(2^2) + 1/(3^3) + ... 1/(n^n).

Original entry on oeis.org

1, 1, 4, 108, 6912, 21600000, 583200000, 480290277600000, 31476303632793600000, 16727798278915463577600000, 52274369621610823680000000000, 14914487726878692033020558868480000000000
Offset: 0

Views

Author

Amarnath Murthy, May 04 2001

Keywords

Examples

			1, 5/4, 139/108, 8923/6912,...
		

Crossrefs

Programs

  • Maple
    summ := 0; for n from 1 to 15 do printf("%d ", denom(summ)); if (1 = 1) then summ := summ + 1/n^n: end if; od;
  • Mathematica
    Join[{1},Denominator/@Table[Sum[1/i^i,{i,n}],{n,12}]] (* Harvey P. Dale, Jul 03 2011 *)
  • PARI
    a(n) = denominator(sum(k=1, n, 1/(k^k))) \\ Thomas Scheuerle, Feb 26 2025

Formula

A061463(n)/a(n) = Integral_{x=0..1} Gamma(n, -x*log(x))/(x^x*Gamma(n)) dx. - Thomas Scheuerle, Feb 26 2025

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), May 19 2001
a(12) from Harvey P. Dale, Jul 03 2011

A062071 a(n) = [n/1] + [n/(2^2)] + [n/(3^3)] + [n/(4^4)] + ... + [n/(k^k)] + ..., up to infinity, where [ ] is the floor function.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90
Offset: 1

Views

Author

Amarnath Murthy, Jun 13 2001

Keywords

Examples

			a(7) = [7/1] + [7/4] + [7/27] + ... = 7 + 1 + 0 + 0 + ... = 8.
a(8) = [8/1] + [8/4] + [8/27] + [8/256] + ... = 8 + 2 + 0 + 0 + ... = 10.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Floor[n/k^k], {k, 1, Floor[N[Log[n]/LambertW[Log[n]]]] + 1}], {n, 2, 100}]}] (* Vaclav Kotesovec, Aug 30 2021 *)
  • PARI
    \p 10 v=[]; for(n=1,120,v=concat(v,suminf(k=1,floor(n/k^k)))); v
    
  • PARI
    for (n=1, 1000, write("b062071.txt", n, " ", suminf(k=1, n\k^k)\1) ) \\ Harry J. Smith, Jul 31 2009
    
  • PARI
    a(n)=sum(k=1,exp(lambertw(log(n)))+1,n\k^k) \\ Charles R Greathouse IV, May 28 2015
    
  • SageMath
    [sum( floor(n/j^j) for j in (1..1+log(n)) ) for n in (1..100)] # G. C. Greubel, May 06 2022

Formula

a(n) = Sum_{i=1..n} floor(n/i^i). - Wesley Ivan Hurt, Sep 15 2017
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k^k)/(1 - x^(k^k)). - Seiichi Manyama, Aug 30 2021
Conjecture: a(n) ~ c * n, where c = A073009. - Vaclav Kotesovec, Aug 30 2021

Extensions

More terms from Jason Earls, Jun 21 2001

A085529 a(n) = (2n+1)^(2n+1).

Original entry on oeis.org

1, 27, 3125, 823543, 387420489, 285311670611, 302875106592253, 437893890380859375, 827240261886336764177, 1978419655660313589123979, 5842587018385982521381124421, 20880467999847912034355032910567, 88817841970012523233890533447265625, 443426488243037769948249630619149892803
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2003

Keywords

Comments

a(n) == 2*n + 1 (mod 24). - Mathew Englander, Aug 16 2020

Crossrefs

Programs

Formula

From Mathew Englander, Aug 16 2020: (Start)
a(n) = A000312(2*n + 1).
a(n) = A016754(n)^n * (2*n + 1).
a(n) = A085527(n)^2 * (2*n + 1).
a(n) = A085528(n)^2 / (2*n + 1).
a(n) = A085530(n) * A005408(n).
a(n) = A085531(n) * A016754(n).
a(n) = A085532(n)^2 - A215265(2*n + 1).
a(n) = A085533(n) + A045531(2*n + 1).
a(n) = A085534(n+1) - A007781(2*n + 1).
a(n) = A085535(n+1) - A055869(2*n + 1).
(End)
Sum_{n>=0} 1/a(n) = (A073009 + A083648)/2 = 1.0373582538... . - Amiram Eldar, May 17 2022

A086648 Decimal expansion of the sum n^(-2n) for n=1 through infinity.

Original entry on oeis.org

1, 0, 6, 3, 8, 8, 7, 1, 0, 3, 7, 6, 2, 4, 1, 7, 0, 1, 1, 7, 4, 6, 4, 9, 1, 1, 1, 7, 6, 6, 0, 0, 1, 1, 1, 1, 5, 7, 2, 7, 1, 9, 9, 0, 7, 6, 8, 9, 1, 5, 9, 9, 2, 8, 6, 6, 3, 4, 0, 8, 3, 8, 6, 9, 6, 6, 7, 9, 4, 6, 6, 5, 5, 0, 7, 6, 0, 6, 5, 7, 3, 2, 5, 5, 5, 6, 2, 0, 8, 9, 0, 6, 9, 1, 9, 8, 7, 5, 1, 9, 4, 0, 2, 6, 6
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Jul 26 2003

Keywords

Comments

This number is the sum of the inverses of the terms in the sequence A062206.

Examples

			1.063887103762417011746491117660011115727199076891599286634083869667...
		

Crossrefs

Programs

Extensions

Clarified definition - R. J. Mathar, Feb 06 2009
More terms from Franklin T. Adams-Watters, Mar 23 2010

A134880 Decimal expansion of Sum_{k>=1} 1/(2^k)^(2^k).

Original entry on oeis.org

2, 5, 3, 9, 0, 6, 3, 0, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 4, 4, 4, 8, 3, 5, 1, 0, 8, 6, 2, 4, 2, 7, 5, 2, 2, 1, 7, 0, 0, 3, 7, 2, 6, 4, 0, 0, 4, 4, 1, 8, 1, 3, 1, 3, 3, 3, 7, 0, 7, 2, 6, 6, 4, 5, 8, 5, 4, 1, 1, 9, 7, 7, 3, 3, 5, 5, 9, 0, 7, 7, 9, 3, 6, 0, 9, 7, 6, 6, 9, 0, 4, 0, 1
Offset: 0

Views

Author

Artur Jasinski, Nov 14 2007

Keywords

Examples

			0.25390630960464477544483510862427522170037264004418131333707266458541197733559...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[1/(2^n)^(2^n), {n, 1, 30}], 200]][[1]]
  • PARI
    suminf(k=1, 1/(2^k)^(2^k)) \\ Michel Marcus, Jan 15 2021
Previous Showing 11-20 of 49 results. Next