cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A381155 Decimal expansion of the isoperimetric quotient of a regular 10-gon.

Original entry on oeis.org

9, 6, 6, 8, 8, 2, 7, 9, 9, 0, 4, 6, 4, 0, 2, 5, 4, 0, 3, 2, 8, 1, 8, 3, 2, 1, 9, 1, 8, 2, 7, 5, 2, 9, 8, 8, 4, 6, 9, 8, 6, 8, 2, 4, 1, 0, 8, 4, 4, 0, 4, 2, 9, 1, 1, 0, 9, 9, 3, 6, 4, 1, 5, 1, 8, 4, 4, 7, 6, 9, 2, 9, 5, 1, 0, 1, 3, 1, 0, 2, 1, 4, 3, 7, 9, 2, 2, 0, 5, 5
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.96688279904640254032818321918275298846986824108440...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(10*Tan[Pi/10]), 10, 100]]

Formula

Equals Pi/(10*tan(Pi/10)) = Pi/(10*A019916).
Equals (1/25)*Pi*A178816.

A381156 Decimal expansion of the isoperimetric quotient of a regular 11-gon.

Original entry on oeis.org

9, 7, 2, 6, 6, 2, 0, 0, 0, 9, 1, 9, 9, 0, 6, 8, 1, 9, 5, 3, 8, 2, 8, 8, 9, 7, 9, 3, 8, 5, 2, 6, 7, 6, 3, 1, 7, 1, 2, 9, 6, 5, 4, 1, 1, 1, 4, 2, 3, 4, 2, 8, 8, 2, 7, 3, 7, 9, 8, 9, 0, 4, 7, 0, 0, 5, 8, 7, 1, 2, 6, 7, 8, 3, 2, 5, 6, 9, 3, 0, 8, 0, 2, 3, 1, 7, 8, 7, 5, 0
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.97266200091990681953828897938526763171296541114234...
		

Crossrefs

Cf. A256854.
Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(11*Tan[Pi/11]), 10, 100]]

Formula

Equals Pi/(11*tan(Pi/11)).
Equals (4/121)*Pi*A256854.

A381157 Decimal expansion of the isoperimetric quotient of a regular 12-gon.

Original entry on oeis.org

9, 7, 7, 0, 4, 8, 6, 1, 6, 6, 5, 6, 8, 5, 3, 3, 3, 5, 7, 2, 5, 6, 2, 6, 7, 9, 4, 9, 5, 7, 1, 2, 2, 7, 4, 7, 1, 0, 3, 8, 7, 8, 1, 2, 8, 5, 8, 5, 7, 0, 2, 7, 8, 0, 7, 2, 1, 6, 2, 8, 6, 6, 5, 8, 9, 8, 3, 3, 3, 5, 2, 9, 6, 6, 2, 6, 2, 3, 3, 0, 4, 0, 2, 5, 7, 0, 3, 7, 1, 7
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.97704861665685333572562679495712274710387812858570...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(12*Tan[Pi/12]), 10, 100]]

Formula

Equals Pi/(12*tan(Pi/12)) = Pi/(12*A019913).
Equals (1/36)*Pi*A178809.

A381671 Decimal expansion of the isoperimetric quotient of a regular tetrahedron.

Original entry on oeis.org

3, 0, 2, 2, 9, 9, 8, 9, 4, 0, 3, 9, 0, 3, 6, 3, 0, 8, 4, 3, 2, 3, 4, 6, 3, 7, 6, 2, 7, 3, 6, 9, 2, 6, 2, 2, 0, 4, 7, 3, 4, 4, 3, 7, 4, 6, 8, 2, 1, 2, 3, 4, 2, 9, 2, 6, 1, 6, 4, 7, 4, 8, 9, 2, 3, 1, 3, 5, 3, 8, 6, 3, 5, 2, 1, 0, 5, 8, 9, 8, 0, 6, 1, 4, 0, 2, 0, 8, 3, 1
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

Polya (1954) defines the isoperimetric quotient of a solid as 36*Pi*V^2/(S^3), where V and S are the volume and surface area of the solid, respectively.
The isoperimetric quotient of a sphere is 1.

Examples

			0.30229989403903630843234637627369262204734437468212...
		

References

  • George Polya, Mathematics and Plausible Reasoning, Vol. 1: Induction and Analogy in Mathematics, Princeton University Press, Princeton, New Jersey, 1954. See pp. 188-189, exercise 43.

Crossrefs

Cf. A273633 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381672 (icosahedron).

Programs

  • Mathematica
    First[RealDigits[Pi/(6*Sqrt[3]), 10, 100]]

Formula

Equals Pi/(6*sqrt(3)) = A019673/A002194.

A086464 Decimal expansion of 17/36*zeta(4).

Original entry on oeis.org

5, 1, 1, 0, 9, 7, 0, 8, 2, 5, 8, 5, 8, 1, 5, 2, 5, 7, 1, 0, 4, 7, 7, 9, 5, 2, 3, 3, 6, 6, 6, 6, 2, 6, 2, 0, 7, 5, 4, 7, 4, 3, 5, 0, 5, 0, 7, 2, 7, 3, 2, 1, 5, 0, 8, 5, 0, 2, 9, 4, 3, 2, 3, 9, 5, 9, 7, 2, 3, 6, 2, 4, 3, 1, 0, 5, 1, 3, 0, 6, 6, 4, 2, 9, 6, 5, 1, 7, 7, 2, 5, 2, 8, 0, 2, 4, 9, 6, 0, 9, 1, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jul 21 2003

Keywords

Examples

			0.51109708258581525710477952336666262075474350507273...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[17*Zeta[4]/36, 10, 120][[1]] (* Amiram Eldar, May 25 2023 *)
  • PARI
    zeta(4)*17/36 \\ Michel Marcus, Jul 31 2015

Formula

Equals Sum_{n>=1} 1/(n^4 * binomial(2*n,n)).

A210453 Decimal expansion of Sum_{n>=1} 1/(n*binomial(3*n,n)).

Original entry on oeis.org

3, 7, 1, 2, 1, 6, 9, 7, 5, 2, 6, 0, 2, 4, 7, 0, 3, 4, 4, 7, 4, 7, 7, 1, 6, 6, 6, 0, 7, 5, 3, 5, 8, 8, 0, 5, 5, 8, 7, 6, 2, 9, 4, 6, 9, 0, 5, 1, 9, 7, 2, 2, 2, 1, 3, 6, 4, 7, 7, 8, 9, 3, 9, 5, 7, 3, 4, 0, 0, 0, 8, 3, 5, 3, 5, 5, 9, 8, 4, 9, 6, 9, 1, 3, 1, 4, 3, 2, 7, 5, 4, 1, 7, 7, 6, 5, 0, 5, 0, 9, 9, 2, 3, 2, 3, 9, 6, 1, 7, 5, 6, 9, 0, 7, 7, 3, 5, 3, 5, 2, 7, 3, 1, 6, 8, 6
Offset: 0

Views

Author

R. J. Mathar, Jan 21 2013

Keywords

Examples

			0.37121697526024703447477166607535880558762946905197...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 60.

Crossrefs

Programs

  • Maple
    A075778neg := proc()
            1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
    end proc:
    A210462 := proc()
            local a075778 ;
            a075778 := A075778neg() ;
            (1+1/a075778/(a075778-1))/2 ;
    end proc:
    A210463 := proc()
            local a075778,a210462 ;
            a075778 := A075778neg() ;
            a210462 := A210462() ;
            -1/a075778-a210462^2 ;
            sqrt(%) ;
    end proc:
    A210453 := proc()
            local v,x;
            v := 0.0 ;
            for x in [ A075778neg(), A210462()+I*A210463(), A210462()-I*A210463() ] do
                    v := v+ x*log(1-1/x)/(3*x-2) ;
            end do:
            evalf(v) ;
    end proc:
    A210453() ;
  • Mathematica
    RealDigits[ HypergeometricPFQ[{1, 1, 3/2}, {4/3, 5/3}, 4/27]/3, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

Formula

Equals Sum_{n>=1} 1/(n*A005809(n)).
Equals Integral_{x=0..1} x^2/(1-x^2+x^3) dx.
Equals Sum_(R) R*log(1-1/R)/(3*R-2) where R is summed over the set of the three constants -A075778, A210462-i*A210463 and A210462-i*A210463, i=sqrt(-1), that is, over the set of the three roots of x^3-x^2+1.
Equals (1/sqrt(23)) * (arctan(sqrt(3)/(2*phi-1)) * 18*phi/(phi^2-phi+1) - log((phi^3+1)/(phi+1)^3) * (3*sqrt(3)*phi*(1-phi))/(phi^3+1)), where phi = ((25+3*sqrt(69))/2)^(1/3) (Batir, 2005, p. 378, eq. (3.2)). - Amiram Eldar, Dec 07 2024

A273984 Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

1, 0, 7, 1, 2, 8, 5, 0, 5, 5, 4, 2, 1, 8, 0, 7, 6, 5, 8, 5, 1, 8, 7, 1, 1, 9, 7, 8, 0, 3, 0, 8, 1, 7, 1, 6, 0, 7, 6, 3, 1, 7, 9, 7, 7, 7, 1, 6, 7, 0, 5, 6, 2, 1, 7, 0, 2, 4, 6, 9, 3, 6, 5, 9, 9, 5, 0, 1, 8, 3, 8, 7, 1, 4, 9, 3, 0, 6, 4, 0, 8, 7, 9, 9, 6, 2, 7, 2, 3, 0, 0, 0, 9, 3, 7, 4, 3, 0, 9, 6, 7, 6, 6, 9, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			1.07128505542180765851871197803081716076317977716705621702469365995...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273985 (s(5,3)), A273986 (s(5,5)).

Programs

  • Mathematica
    s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105];
    RealDigits[s[5, 1]][[1]]
  • PARI
    intnumosc(x=0,x*besseli(0,x)*besselk(0,x)^4,Pi) \\ Charles R Greathouse IV, Oct 23 2023

Formula

s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 C (conjectural, where C is A273959).

Extensions

Offset corrected by Rick L. Shepherd, Jun 07 2016

A273985 Decimal expansion of the odd Bessel moment s(5,3) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

0, 8, 5, 9, 3, 7, 2, 9, 0, 6, 9, 1, 7, 6, 8, 4, 5, 2, 4, 2, 3, 8, 4, 1, 7, 4, 5, 7, 8, 7, 6, 4, 6, 9, 5, 8, 0, 3, 3, 7, 8, 7, 3, 7, 7, 9, 1, 3, 0, 6, 4, 9, 8, 0, 6, 4, 3, 1, 6, 8, 4, 6, 6, 9, 6, 3, 7, 5, 7, 9, 0, 7, 5, 2, 2, 9, 7, 2, 3, 0, 2, 5, 5, 5, 6, 5, 1, 6, 0, 0, 9, 8, 3, 3, 8, 1, 9, 3, 1, 2, 4, 6, 7, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			0.0859372906917684524238417457876469580337873779130649806431684669637579...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273986 (s(5,5)).

Programs

  • Mathematica
    s[5, 3] = NIntegrate[x^3*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 103];
    Join[{0}, RealDigits[s[5, 3]][[1]]]

Formula

s(5,3) = Integral_{0..inf} x^3*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 (2/15)^2 (13 C - 1/(10 C)) (conjectural, where C is A273959).

A273986 Decimal expansion of the odd Bessel moment s(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

0, 5, 4, 5, 1, 4, 2, 5, 3, 1, 3, 2, 7, 6, 1, 8, 8, 0, 3, 6, 3, 0, 3, 3, 9, 1, 9, 8, 0, 2, 0, 0, 9, 5, 9, 6, 8, 7, 7, 6, 1, 4, 3, 4, 9, 5, 4, 4, 5, 7, 5, 9, 1, 3, 6, 4, 9, 9, 4, 0, 2, 6, 4, 6, 3, 4, 0, 8, 5, 7, 9, 9, 3, 6, 3, 3, 0, 3, 5, 4, 6, 1, 0, 5, 5, 1, 5, 7, 3, 8, 2, 8, 2, 4, 7, 0, 9, 0, 6, 1, 3, 3, 1, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			0.054514253132761880363033919802009596877614349544575913649940264634...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)).

Programs

  • Mathematica
    s[5, 5] = NIntegrate[x^5*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 103];
    Join[{0}, RealDigits[s[5, 5]][[1]]]

Formula

s(5,5) = Integral_{0..inf} x^5*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 (4/15)^3 (43 C - 19/(40 C)) (conjectural, where C is A273959).

A113448 Expansion of (eta(q^2)^2 * eta(q^9) * eta(q^18)) / (eta(q) * eta(q^6)) in powers of q.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 2, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 3, 0, 1, 0, 0, 2, 2, 0
Offset: 1

Views

Author

Michael Somos, Nov 02 2005

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = x + x^2 + x^4 + 2*x^7 + x^8 + 2*x^13 + 2*x^14 + x^16 + 2*x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, If[ Mod[n, 3] == 0, 0, DivisorSum[ n, KroneckerSymbol[ -12, #] &]]]; (* Michael Somos, Jul 30 2015 *)
    a[ n_] := SeriesCoefficient[ x QPochhammer[ x^9]^3 / QPochhammer[ x^3] + x^2 QPochhammer[ x^18]^3 / QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jul 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%3, sumdiv(n,d, kronecker(-12, d))))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, if( p==3, 1, 1 / ((1 - X) * (1 - kronecker(-12, p)*X))))[n])}
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 0, p%6==1, e+1, !(e%2))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^9 + A) * eta(x^18 + A) / (eta(x + A) * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^9 + A)^3 / eta(x^3 + A) + x * eta(x^18 + A)^3 / eta(x^6 + A), n))};

Formula

Euler transform of period 18 sequence [ 1, -1, 1, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 1, -1, 1, -2, ...].
Moebius transform is period 18 sequence [ 1, 0, -1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
a(3*n) = 0, a(2*n) = a(n).
G.f.: Sum_{k>0} x^(6*k - 5) / (1 - x^(6*k - 5)) - x^(6*k - 1) / (1 - x^(6*k - 1)) - x^(18*k - 15) / (1 - x^(18*k - 15)) + x^(18*k - 6) / (1 - x^(18*k - 6)).
G.f.: Sum_{k>0} x^k * (1 - x^(2*k)) * (1 - x^(4*k)) * (1-x^(10*k)) / (1 - x^(18*k)).
Expansion of (c(q) + c(q^2))/3 in powers of q^(1/3) where c(q) is a cubic AGM theta function.
a(3*n + 1) = A033687(n). a(6*n + 1) = A097195(n). - Michael Somos, Jul 30 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Oct 15 2022
Previous Showing 21-30 of 58 results. Next