cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A138806 Expansion of (theta_3(q) * theta_3(q^27) + theta_2(q) * theta_2(q^27) - 1) / 2 in powers of q.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 2, 0, 3, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 6, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Mar 30 2008

Keywords

Comments

Half the number of integer solutions to x^2 + x*y + 7*y^2 = n. - Jianing Song, Nov 20 2019

Examples

			q + q^4 + 2*q^7 + 3*q^9 + 2*q^13 + q^16 + 2*q^19 + q^25 + 3*q^27 + ...
		

Crossrefs

Cf. A138805 (number of integer solutions to x^2 + x*y + 7*y^2 = n).
Similar sequences: A096936, A113406, A110399.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 6] == 1, e + 1, (1 + (-1)^e)/2]; f[2, e_] := 1 - Mod[e, 2]; f[3, e_] := 3; f[3, 1] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%3 == 2, 0, if( n%3==1, sumdiv(n, d, kronecker(-3, d)), if( n%9==0, 3 * sumdiv(n/9, d, kronecker(-3, d))))))}
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-3, d)) - if( n%3==0, sumdiv(n/3, d, [0, 1, -1, -3, 1, -1, 3, 1, -1][d%9+1])))}
    
  • PARI
    {a(n) = if( n<1, 0, qfrep([2, 1; 1, 14], n, 1)[n])}

Formula

a(n) is multiplicative and a(3^e) = 3 if e>1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
a(3*n + 2) = a(4*n + 2) = 0.
G.f.: (Sum_{i,j} x^(i*i + i*j + 7*j*j) - 1) / 2.
A138805(n) = 2 * a(n) unless n=0. A033687(n) = a(3*n + 1). A097195(n) = a(6*n + 1). A123884(n) = a(12*n + 1). 2 * A121361(n) = a(12*n + 7).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 16 2023

A166517 a(n) = (3 + 5*(-1)^n + 6*n)/4.

Original entry on oeis.org

2, 1, 5, 4, 8, 7, 11, 10, 14, 13, 17, 16, 20, 19, 23, 22, 26, 25, 29, 28, 32, 31, 35, 34, 38, 37, 41, 40, 44, 43, 47, 46, 50, 49, 53, 52, 56, 55, 59, 58, 62, 61, 65, 64, 68, 67, 71, 70, 74, 73, 77, 76, 80, 79, 83, 82, 86, 85, 89, 88, 92, 91, 95, 94, 98, 97, 101, 100, 104, 103, 107
Offset: 0

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Comments

A sequence defined by a(1)=1, a(n)=k*n-a(n-1), k a constant parameter, has recurrence a(n)= 3*a(n-1) -3*a(n-2) +a(n-3). Its generating function is x*(1+2*(k-1)*x+(1-k)*x^2)/((1+x)*(1-x)^2). The closed form is a(n) = k*n/2+k/4+(-1)^n*(3*k/4-1). This applies with k=3 to this sequence here, and for example to sequences A165033, and A166519-A166525. - R. J. Mathar, Oct 17 2009
From Paul Curtz, Feb 20 2010: (Start)
Also: A001651, terms swapped by pairs.
a(n) mod 9 defines a period-6 sequence which is a permutation of A141425. (End)

Crossrefs

Programs

  • Magma
    [(3 +5*(-1)^n+6*n)/4: n in [0..80]]; // Vincenzo Librandi, Sep 13 2013
  • Mathematica
    CoefficientList[Series[(2 x^2 - x + 2)/((1 + x) (x - 1)^2), {x, 0, 80}], x] (* Harvey P. Dale, Mar 25 2011 *)
    Table[(3 + 5 (-1)^n + 6 n) / 4, {n, 0, 100}] (* Vincenzo Librandi, Sep 13 2013 *)

Formula

a(n) = 3*n - a(n-1).
From Paul Curtz, Feb 20 2010: (Start)
a(n+1)-a(n) = (-1)^(n+1)*A010685(n).
Second differences: |a(n+2)-2*a(n+1)+a(n)| = A010716(n).
a(2*n) + a(2*n+1) = A016945(n) = 6*n+3.
a(2*n) = A016945(n).
a(2*n+1) = A016777(n). (End)
G.f. ( 2-x+2*x^2 ) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Mar 08 2011
E.g.f.: (1/4)*exp(-x)*(5 + 3*exp(2*x) + 6*x*exp(2*x)). - G. C. Greubel, May 15 2016
Sum_{n>=0} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Feb 24 2023

Extensions

a(0)=2 added by Paul Curtz, Feb 20 2010

A260658 Numerators of a BBP-like formula for 4*Pi/sqrt(27).

Original entry on oeis.org

5, -7, 23, -1, 41, -25, 59, -17, 77, -43, 95, -13, 113, -61, 131, -35, 149, -79, 167, -11, 185, -97, 203, -53, 221, -115, 239, -31, 257, -133, 275, -71, 293, -151, 311, -5, 329, -169, 347, -89, 365, -187, 383, -49, 401, -205, 419, -107, 437, -223, 455, -29, 473
Offset: 0

Views

Author

David Brink, Nov 13 2015

Keywords

Comments

4*Pi/sqrt(27) = Sum_{n >= 0} (-1/8)^n*(2/(3*n+1)+1/(3*n+2)).
The reduced Collatz function R applied to the numbers 6n+3: a(n) = R(6n+3), where R(k) = (3k+1)/2^r, with r as large as possible, yields an unsigned version of this sequence. - Jonas Kaiser, Jun 17 2024

Crossrefs

Cf. A073010, A260659 (denominators).

Programs

  • Magma
    [Numerator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))): n in [0..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    A260658[n_] := Numerator[(-1/8)^n*(2/(3*n + 1) + 1/(3*n + 2))];
    Array[A260658, 100, 0] (* Paolo Xausa, Jun 19 2024 *)
  • PARI
    a(n) = numerator((-1/8)^n*(2/(3*n+1) + 1/(3*n+2))); \\ Michel Marcus, Nov 15 2015
    

Formula

a(n) = numerator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))).

Extensions

More terms from Michel Marcus, Nov 15 2015

A293899 Number of proper divisors of the form 3k+1 minus number of proper divisors of the form 3k+2.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, -1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, 1, 2, -1, 1, 0, 1, 1, 0, -1, 1, 1, 2, 1, 0, 1, 1, 0, -1, 1, 2, -1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 0, -1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 2, -1, 1, 0, -1, 1, 0, 3, 1, 2, -1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[Mod[#, 3] == 1, # != n] &] - DivisorSum[n, 1 &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
    Table[Total[Which[Mod[#,3]==1,1,Mod[#,3]==2,-1,True,0]&/@Most[ Divisors[ n]]],{n,110}] (* Harvey P. Dale, Nov 26 2021 *)
  • PARI
    A293895(n) = sumdiv(n,d,(dA293896(n) = sumdiv(n,d,(dA293899(n) = (A293895(n) - A293896(n));

Formula

When n = 3k, a(n) = A002324(n), when n = 3k+1, a(n) = A002324(n) - 1, when n = 3k+2, a(n) = A002324(n) + 1.
a(n) = A002324(n) - A010872(n) (mod 3).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 25 2023

A204068 Decimal expansion of the Fresnel Integral Integral_{x>=0} sin(x^3) dx.

Original entry on oeis.org

4, 4, 6, 4, 8, 9, 7, 5, 5, 7, 8, 4, 6, 2, 4, 6, 0, 5, 6, 0, 9, 2, 8, 2, 1, 5, 6, 8, 2, 9, 1, 1, 2, 9, 4, 0, 6, 8, 8, 1, 1, 4, 8, 9, 6, 3, 2, 6, 2, 1, 6, 8, 5, 0, 1, 5, 8, 4, 0, 4, 7, 2, 1, 2, 6, 5, 0, 6, 9, 6, 0, 1, 6, 9, 4, 6, 2, 3, 9, 6, 9, 9, 2, 3, 4, 9, 7, 1, 4, 8, 1, 7, 3, 5, 3, 1, 4, 6, 4, 9, 0, 3, 1, 9, 3
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Comments

Imaginary part associated with A204067.

Examples

			0.446489755784624605609282...
		

Crossrefs

Programs

  • Maple
    evalf(Pi/GAMMA(2/3)/3^(3/2) ) ;
  • Mathematica
    RealDigits[Gamma[1/3]/6, 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)

Formula

Equals Pi/(Gamma(2/3)* 3^(3/2)) = A073010 / A073006.
(this value)^2 + A204067^2 = A202623^2.
Equals Gamma(1/3)/6 = A073005 / 6. - Amiram Eldar, May 26 2023

A261839 Decimal expansion of the central binomial sum S(5), where S(k) = Sum_{n>=1} 1/(n^k*binomial(2n,n)).

Original entry on oeis.org

5, 0, 5, 4, 2, 9, 4, 7, 4, 6, 8, 3, 5, 1, 9, 2, 4, 1, 6, 4, 2, 4, 5, 0, 4, 8, 1, 9, 0, 8, 4, 3, 2, 1, 4, 9, 1, 8, 8, 6, 6, 9, 0, 1, 4, 5, 6, 8, 2, 6, 2, 8, 6, 4, 9, 8, 2, 6, 6, 4, 7, 1, 2, 8, 7, 5, 7, 3, 3, 4, 7, 3, 3, 7, 6, 1, 7, 5, 9, 0, 6, 8, 2, 7, 1, 6, 4, 5, 3, 3, 1, 8, 1, 5, 0, 0, 1, 3, 6, 6, 1, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.5054294746835192416424504819084321491886690145682628649826647...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)).

Programs

  • Mathematica
    S[5] = 2*Pi*Im[PolyLog[4, (-1)^(1/3)]] + (1/9)*Pi^2*Zeta[3] - 19*Zeta[5]/3; RealDigits[S[5], 10, 103] // First
  • PARI
    suminf(n=1, 1/(n^5*binomial(2*n,n))) \\ Michel Marcus, Sep 03 2015

Formula

S(5) = 2*Pi*Im(PolyLog(4, (-1)^(1/3))) + (1/9)*Pi^2*zeta(3) -19*zeta(5)/3.
Equals (1/2) 4F3(1,1,1,1; 3/2,2,2; 1/4).
Also equals (1/(2592*sqrt(3)))*(Pi*(PolyGamma(3, 1/6) + PolyGamma(3, 1/3) - PolyGamma(3, 2/3) - PolyGamma(3, 5/6))) + (1/9)*Pi^2*zeta(3) - 19*zeta(5)/3.

A326919 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.

Original entry on oeis.org

1, 1, 8, 7, 4, 1, 0, 4, 1, 1, 7, 2, 3, 7, 2, 5, 9, 4, 8, 7, 8, 4, 6, 2, 5, 2, 9, 7, 9, 4, 9, 3, 6, 3, 0, 2, 9, 9, 9, 2, 3, 3, 4, 6, 8, 6, 1, 6, 5, 0, 3, 5, 7, 5, 7, 5, 1, 5, 2, 0, 2, 3, 8, 5, 8, 5, 8, 4, 5, 8, 8, 9, 0, 9, 3, 4, 0, 7, 1, 5, 7, 5, 4, 8, 2, 0, 8, 9, 9, 9, 9
Offset: 1

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A175629 and s = 1.

Examples

			1 + 1/2 - 1/3 + 1/4 - 1/5 - 1/6 + 1/8 + 1/9 - 1/10 + 1/11 - 1/12 - 1/13 + ... = Pi/sqrt(7) = 1.1874104117...
		

Crossrefs

Cf. A175629.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k, where d is a fundamental discriminant: A093954 (d=-8), this sequence (d=-7), A003881 (d=-4), A073010 (d=-3), A086466 (d=5), A196525 (d=8), A196530 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: this sequence (s=1), A103133 (s=2), A327135 (s=3).

Programs

  • Mathematica
    RealDigits[Pi/Sqrt[7], 10, 102] // First
  • PARI
    default(realprecision, 100); Pi/sqrt(7)

Formula

Equals Pi/sqrt(7). This is related to the class number formula: if d<0 is the fundamental discriminant of an imaginary quadratic number field, Chi(k) = Kronecker(d,k), then L(1,Chi) = Sum_{k>=1} Kronecker(d,k)/k = 2*Pi*h(d)/(sqrt(|d|)*w(d)), where h(d) is the class number of K = Q[sqrt(d)], w(d) is the number of elements in K whose norms are 1 (w(d) = 6 if d = -3, 4 if d = -4 and 2 if d < -4). Here d = -7, h(d) = 1, w(d) = 2.
Equals (polylog(1,u) + polylog(1,u^2) - polylog(1,u^3) + polylog(1,u^4) - polylog(1,u^5) - polylog(1,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).
Equals (polygamma(0,1/7) + polygamma(0,2/7) - polygamma(0,3/7) + polygamma(0,4/7) - polygamma(0,5/7) - polygamma(0,6/7))/49.
Equals 1/Product_{p prime} (1 - Kronecker(-7,p)/p), where Kronecker(-7,p) = 0 if p = 7, 1 if p == 1, 2 or 4 (mod 7) or -1 if p == 3, 5 or 6 (mod 7). - Amiram Eldar, Dec 17 2023

A087694 Number of solutions to x^2 + xy + y^2 == 0 (mod n).

Original entry on oeis.org

1, 1, 3, 4, 1, 3, 13, 4, 9, 1, 1, 12, 25, 13, 3, 16, 1, 9, 37, 4, 39, 1, 1, 12, 25, 25, 27, 52, 1, 3, 61, 16, 3, 1, 13, 36, 73, 37, 75, 4, 1, 39, 85, 4, 9, 1, 1, 48, 133, 25, 3, 100, 1, 27, 1, 52, 111, 1, 1, 12, 121, 61, 117, 64, 25, 3, 133, 4, 3, 13
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 27 2003

Keywords

Crossrefs

Programs

  • Maple
    A087694 := proc(n) option remember; local pf,p,f,e ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then f := op(1,pf) ; p := op(1,f) ; e := op(2,f) ; if p = 3 then n ; elif p mod 3 =1 then ((p-1)*e+p)*p^(e-1) ; else p^(2*floor(e/2)) ; end if; else mul(procname(op(1,p)^op(2,p)),p=pf) ; end if; end if; end proc:
    seq(A087694(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    a[n_] := If[n==1, 1, Product[{p, e} = pe; Which[p==3, 3^e, Mod[p, 3] == 2, (p^2)^Quotient[e, 2], True, ((p-1) e + p) p^(e-1)], {pe, FactorInteger[n] }]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==3, 3^e, if(p%3==2, (p^2)^(e\2), ((p-1)*e+p)*p^(e-1))))} \\ Andrew Howroyd, Jul 09 2018

Formula

Multiplicative with a(3^e) = 3^e, a(p^e) = ((p-1)*e+p)*p^(e-1) if p mod 3 = 1, a(p^e) = p^(2*floor(e/2)) if p mod 3 = 2. - Vladeta Jovovic, Sep 27 2003
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A073010/A086724 = 0.77383581325017004332... . - Amiram Eldar, Nov 21 2023

A225847 Decimal expansion of Sum_{n>=1} 1/(n*binomial(4*n,n)).

Original entry on oeis.org

2, 6, 9, 5, 2, 3, 9, 2, 9, 0, 2, 7, 7, 4, 2, 0, 1, 7, 3, 1, 7, 1, 8, 1, 6, 4, 7, 4, 8, 6, 3, 2, 9, 3, 0, 2, 8, 4, 0, 8, 4, 9, 8, 2, 5, 3, 4, 3, 2, 6, 6, 3, 0, 9, 8, 1, 5, 8, 4, 3, 7, 7, 2, 9, 1, 8, 6, 2, 8, 3, 6, 9, 8, 2, 7, 6, 4, 0, 8, 2, 5, 3, 2, 7, 3, 3, 1, 2, 6, 1, 8, 5, 8, 3, 0, 0, 4, 8, 4, 4, 0, 6, 0, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, May 17 2013

Keywords

Examples

			0.269523929027742017317181647486329302840849825343266309815843772918628369827...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 60.

Crossrefs

Programs

  • Mathematica
    (1/4)*HypergeometricPFQ[{1, 1, 4/3, 5/3}, {5/4, 3/2, 7/4}, 27/256] // RealDigits[#, 10, 105]& // First

Formula

Equals Integral_{x>0} ((3*x)/((1 + x)*(1 + 3*x + 6*x^2 + 4*x^3 + x^4))) dx.
Equals (3*c/(2*c^2+1)) * log((c-1)/(c+1)) + (3*(c-1)/(2*(2*c^2+1))) * sqrt(c/(c+2)) * arctan(2*sqrt(c^2+2*c)/(c^2+2*c-1)) + (3*(c+1)/(2*(2*c^2+1))) * sqrt(c/(c-2)) * arctan(2*sqrt(c^2-2*c)/(c^2-2*c-1)), where c = sqrt(1 + (16/sqrt(3)) * cos(arctan(sqrt(229/27))/3)) (Batir and Sofo, 2013). - Amiram Eldar, Dec 07 2024

A260659 Denominators of a BBP-like formula for 4*Pi/sqrt(27).

Original entry on oeis.org

2, 80, 3584, 1760, 745472, 4456448, 99614720, 265289728, 10905190400, 54492397568, 1065151889408, 1277752770560, 96619584290816, 450799767388160, 8321103999008768, 19017153114013696, 689613692941107200, 3102980143258271744, 55484347409204510720, 30822635849723674624
Offset: 0

Views

Author

David Brink, Nov 13 2015

Keywords

Comments

4*Pi/sqrt(27) = Sum_{n >= 0} (-1/8)^n*(2/(3*n+1)+1/(3*n+2)).

Crossrefs

Cf. A073010, A260658 (numerators).

Programs

  • Magma
    [Denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))): n in [0..60]]; // Vincenzo Librandi, Nov 20 2015
  • Mathematica
    A260659[n_] := Denominator[(-1/8)^n*(2/(3*n + 1) + 1/(3*n + 2))];
    Array[A260659, 25, 0] (* Paolo Xausa, Jun 19 2024 *)
  • PARI
    a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))); \\ Michel Marcus, Nov 15 2015
    

Formula

a(n) = denominator((-1/8)^n*(2/(3*n+1)+1/(3*n+2))).

Extensions

More terms from Michel Marcus, Nov 15 2015
Previous Showing 31-40 of 58 results. Next