A095977
Expansion of g.f. 2*x / ((1+x)^2*(1-2*x)^2).
Original entry on oeis.org
2, 4, 14, 32, 82, 188, 438, 984, 2202, 4852, 10622, 23056, 49762, 106796, 228166, 485448, 1029162, 2174820, 4582670, 9631360, 20194802, 42253724, 88235734, 183927992, 382769082, 795364308, 1650380958, 3420066544, 7078742402, 14634703372, 30223843942, 62356562216
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
- A. Flatters, Prime divisors of some Lehmer-Pierce sequences, arXiv:0708.2190 [math.NT], 2007.
- R. P. Grimaldi, Tilings, Compositions, and Generalizations, J. Int. Seq. 13 (2010), 10.6.5, page 7.
- Luka Podrug, Horadam cubes, arXiv:2410.03193 [math.CO], 2024. See p. 11.
- Helmut Prodinger, On binary representations of integers with digits -1,0,1, Integers 0 (2000), #A08.
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4).
-
a:=n->n/9*2^(n+2)+1/27*2^(n+3)-2*n/9*(-1)^n-8/27*(-1)^n: seq(a(n),n=1..30); # Emeric Deutsch, Feb 18 2007
-
Table[(1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n) , {n,1,50}] (* G. C. Greubel, Dec 28 2016 *)
-
Vec(2*x / ((1+x)^2 * (1-2*x)^2) + O(x^50)) \\ Michel Marcus, Nov 07 2015
A102713
Total sum of odd parts in all compositions of n.
Original entry on oeis.org
1, 2, 8, 18, 48, 110, 260, 586, 1320, 2918, 6412, 13954, 30192, 64926, 138964, 296122, 628664, 1330134, 2805916, 5903090, 12388736, 25942542, 54215268, 113090858, 235502408, 489646150, 1016575020, 2107715426, 4364561680, 9027384958, 18651293172, 38495632794
Offset: 1
-
a(n)={((15*n+4)*2^(n-1) - 2*(3*n+1)*(-1)^n)/27} \\ Andrew Howroyd, Jan 08 2020
-
Vec(x*(1 + x^2) / ((1 + x)^2*(1 - 2*x)^2) + O(x^35)) \\ Colin Barker, Jan 08 2020
A128100
Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0
Triangle starts:
1;
1;
2, 1;
3, 2;
5, 5, 1;
8, 10, 3;
13, 20, 9, 1;
21, 38, 22, 4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
1;
1, 0;
2, 1, 0;
3, 2, 0, 0;
5, 5, 1, 0, 0;
8, 10, 3, 0, 0, 0;
13, 20, 9, 1, 0, 0, 0;
21, 38, 22, 4, 0, 0, 0, 0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
1
2 + x
3 + 2x
5 + 5x + x^2. (End)
- C.-P. Chou and H. A. Witek, An Algorithm and FORTRAN Program for Automatic Computation of the Zhang-Zhang Polynomial of Benzenoids, MATCH: Commun. Math. Comput. Chem, 68 (2012) 3-30. See Eq. (9). - From _N. J. A. Sloane_, Dec 23 2012
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, preprint.
- S. Klavzar, M. Mollard, Cube polynomial of Fibonacci and Lucas cubes, Acta Appl. Math. 117, 2012, 93-105. - _Emeric Deutsch_, Aug 12 2014
-
G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
-
p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
Numerator[Table[Factor[p[x, n]], {n, 1, 20}]] (* Clark Kimberling, Oct 22 2014 *)
A127985
a(n) = floor(2^n*(n/3 + 4/9)).
Original entry on oeis.org
0, 1, 4, 11, 28, 67, 156, 355, 796, 1763, 3868, 8419, 18204, 39139, 83740, 178403, 378652, 800995, 1689372, 3553507, 7456540, 15612131, 32622364, 68040931, 141674268, 294533347, 611436316, 1267611875, 2624702236, 5428361443
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (corrected by Ray Chandler, Jan 19 2019)
- Wieb Bosma, Signed bits and fast exponentiation, J. Th. Nombres de Bordeaux, 13 no. 1 (2001), p. 27-41.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,4).
Cf.
A073371,
A127976,
A127978,
A127979,
A127980,
A127981,
A127982,
A127983,
A127984,
A073371,
A000337.
-
[(n/3 + 4/9)*2^n - 1/2 + (-1)^n/18: n in [1..40]]; // Vincenzo Librandi, May 26 2011
-
Table[(n/3 + 4/9) 2^n - 1/2 + (-1)^n/18, {n, 1, 50}]
LinearRecurrence[{4,-3,-4,4},{1,4,11,28},50] (* Harvey P. Dale, May 15 2011 *)
-
a(n)=(n*3+4)<M. F. Hasler, Oct 07 2014
A301699
Generating function = g(g(x)), where g(x) = g.f. of Jacobsthal numbers A001045.
Original entry on oeis.org
0, 1, 2, 8, 26, 94, 330, 1178, 4186, 14914, 53098, 189122, 673530, 2398834, 8543498, 30428162, 108371354, 385970386, 1374653610, 4895901602, 17437011514, 62102837746, 221182535242, 787753281218, 2805624912090, 9992381298706, 35588393716202
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
- Index entries for linear recurrences with constant coefficients, signature (3,4,-6,-4).
-
I:=[0,1,2,8]; [n le 4 select I[n] else 3*Self(n-1)+4*Self(n-2)-6*Self(n-3)-4*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 30 2018
-
f:=proc(a,b) local t1;
t1:=(x-a*x^2-b*x^3)/(1-3*a*x+(2*a^2-3*b)*x^2+3*a*b*x^3 + b^2*x^4);
lprint(t1);
series(t1,x,50);
seriestolist(%);
end;
f(1,2);
-
CoefficientList[Series[(-2 x^3 - x^2 + x) / (4 x^4 + 6 x^3 - 4 x^2 - 3 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 30 2018 *)
Comments