cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A095977 Expansion of g.f. 2*x / ((1+x)^2*(1-2*x)^2).

Original entry on oeis.org

2, 4, 14, 32, 82, 188, 438, 984, 2202, 4852, 10622, 23056, 49762, 106796, 228166, 485448, 1029162, 2174820, 4582670, 9631360, 20194802, 42253724, 88235734, 183927992, 382769082, 795364308, 1650380958, 3420066544, 7078742402, 14634703372, 30223843942, 62356562216
Offset: 1

Views

Author

Ralf Stephan, Jul 16 2004

Keywords

Comments

Number of 2 X 2 tiles in all tilings of a 3 X (n+1) rectangle with 1 X 1 and 2 X 2 square tiles. - Emeric Deutsch, Feb 18 2007
The terms of this sequence have a primitive divisor for all terms beyond the 4th if and only if n is not of the form 4k+2, for some nonnegative integer k. - Anthony Flatters (Anthony.Flatters(AT)uea.ac.uk), Aug 17 2007

Crossrefs

Programs

  • Maple
    a:=n->n/9*2^(n+2)+1/27*2^(n+3)-2*n/9*(-1)^n-8/27*(-1)^n: seq(a(n),n=1..30); # Emeric Deutsch, Feb 18 2007
  • Mathematica
    Table[(1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n) , {n,1,50}] (* G. C. Greubel, Dec 28 2016 *)
  • PARI
    Vec(2*x / ((1+x)^2 * (1-2*x)^2) + O(x^50)) \\ Michel Marcus, Nov 07 2015

Formula

a(n) = (1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n).
a(n) = 2 * A073371(n-1).
a(n) = Sum_{k=0..floor((n+1)/2)} k*2^k*binomial(n+1-k,k). - Emeric Deutsch, Feb 18 2007
E.g.f.: 2*(cosh(x/2) + sinh(x/2))*(15*x*cosh(3*x/2) + (8 + 9*x)*sinh(3*x/2))/27. - Stefano Spezia, Oct 12 2024

A102713 Total sum of odd parts in all compositions of n.

Original entry on oeis.org

1, 2, 8, 18, 48, 110, 260, 586, 1320, 2918, 6412, 13954, 30192, 64926, 138964, 296122, 628664, 1330134, 2805916, 5903090, 12388736, 25942542, 54215268, 113090858, 235502408, 489646150, 1016575020, 2107715426, 4364561680, 9027384958, 18651293172, 38495632794
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2005

Keywords

Crossrefs

Programs

  • PARI
    a(n)={((15*n+4)*2^(n-1) - 2*(3*n+1)*(-1)^n)/27} \\ Andrew Howroyd, Jan 08 2020
    
  • PARI
    Vec(x*(1 + x^2) / ((1 + x)^2*(1 - 2*x)^2) + O(x^35)) \\ Colin Barker, Jan 08 2020

Formula

a(n) = ((15*n+4)*2^(n-1)-2*(3*n+1)*(-1)^n)/27.
From Colin Barker, Jan 08 2020: (Start)
G.f.: x*(1 + x^2) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>4.
(End)

Extensions

Terms a(26) and beyond from Andrew Howroyd, Jan 08 2020

A128100 Triangle read by rows: T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 5, 1, 8, 10, 3, 13, 20, 9, 1, 21, 38, 22, 4, 34, 71, 51, 14, 1, 55, 130, 111, 40, 5, 89, 235, 233, 105, 20, 1, 144, 420, 474, 256, 65, 6, 233, 744, 942, 594, 190, 27, 1, 377, 1308, 1836, 1324, 511, 98, 7, 610, 2285, 3522, 2860, 1295, 315, 35, 1, 987, 3970
Offset: 0

Views

Author

Emeric Deutsch, Feb 18 2007

Keywords

Comments

Row sums are the Jacobsthal numbers (A001045). Column 0 yields the Fibonacci numbers (A000045); the other columns yield convolved Fibonacci numbers (A001629, A001628, A001872, A001873, etc.). Sum_{k=0..floor(n/2)} k*T(n,k) = A073371(n-2).
Triangle T(n,k), with zeros omitted, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 24 2012
Riordan array (1/(1-x-x^2), x^2/(1-x-x^2)), with zeros omitted. - Philippe Deléham, Feb 06 2012
Diagonal sums are A000073(n+2) (tribonacci numbers). - Philippe Deléham, Feb 16 2014
Number of induced subgraphs of the Fibonacci cube Gamma(n-1) that are isomorphic to the hypercube Q_k. Example: row n=4 is 5, 5, 1; indeed, the Fibonacci cube Gamma(3) is a square with an additional pendant edge attached to one of its vertices; it has 5 vertices (i.e., Q_0's), 5 edges (i.e., Q_1's) and 1 square (i.e., Q_2). - Emeric Deutsch, Aug 12 2014
Row n gives the coefficients of the polynomial p(n,x) defined as the numerator of the rational function given by f(n,x) = 1 + (x + 1)/f(n-1,x), where f(x,0) = 1. Conjecture: for n > 2, p(n,x) is irreducible if and only if n is a (prime - 2). - Clark Kimberling, Oct 22 2014

Examples

			Triangle starts:
   1;
   1;
   2,  1;
   3,  2;
   5,  5,  1;
   8, 10,  3;
  13, 20,  9,  1;
  21, 38, 22,  4;
From _Philippe Deléham_, Jan 24 2012: (Start)
Triangle (1, 1, -1, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, ...) begins:
   1;
   1,  0;
   2,  1,  0;
   3,  2,  0,  0;
   5,  5,  1,  0,  0;
   8, 10,  3,  0,  0,  0;
  13, 20,  9,  1,  0,  0,  0;
  21, 38, 22,  4,  0,  0,  0,  0; (End)
From _Clark Kimberling_, Oct 22 2014: (Start)
Here are the first 4 polynomials p(n,x) as in Comment and generated by Mathematica program:
  1
  2 +  x
  3 + 2x
  5 + 5x + x^2. (End)
		

Crossrefs

Programs

  • Maple
    G:=1/(1-z-(1+t)*z^2): Gser:=simplify(series(G,z=0,19)): for n from 0 to 16 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 16 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    p[x_, n_] := 1 + (x + 1)/p[x, n - 1]; p[x_, 1] = 1;
    Numerator[Table[Factor[p[x, n]], {n, 1, 20}]]  (* Clark Kimberling, Oct 22 2014 *)

Formula

G.f.: 1/(1-z-(1+t)z^2).
Sum_{k=0..n} T(n,k)*x^k = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, and -13, respectively. - Philippe Deléham, Jan 24 2012
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1). - Philippe Deléham, Jan 24 2012
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k+1+ x*(1+y))*x/((2*k+2+ x*(1+y))*x + 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
T(n,k) = Sum_{i=k..floor(n/2)} binomial(n-i,i)*binomial(i,k). See Corollary 3.3 in the Klavzar et al. link. - Emeric Deutsch, Aug 12 2014

A127985 a(n) = floor(2^n*(n/3 + 4/9)).

Original entry on oeis.org

0, 1, 4, 11, 28, 67, 156, 355, 796, 1763, 3868, 8419, 18204, 39139, 83740, 178403, 378652, 800995, 1689372, 3553507, 7456540, 15612131, 32622364, 68040931, 141674268, 294533347, 611436316, 1267611875, 2624702236, 5428361443
Offset: 0

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n/3 + 4/9)*2^n - 1/2 + (-1)^n/18: n in [1..40]]; // Vincenzo Librandi, May 26 2011
    
  • Mathematica
    Table[(n/3 + 4/9) 2^n - 1/2 + (-1)^n/18, {n, 1, 50}]
    LinearRecurrence[{4,-3,-4,4},{1,4,11,28},50] (* Harvey P. Dale, May 15 2011 *)
  • PARI
    a(n)=(n*3+4)<M. F. Hasler, Oct 07 2014

Formula

a(n) = (n/3 + 4/9)*2^n - 1/2 + (-1)^n/18.
a(1)=1, a(2)=4, a(3)=11, a(4)=28, a(n) = 4*a(n-1)-3*a(n-2)-4*a(n-3)+4*a(n-4). - Harvey P. Dale, May 15 2011
G.f.: x*(1-2*x^2)/((1-2*x)^2*(1-x^2)). - Harvey P. Dale, May 15 2011
E.g.f.: ((4 + 6*x)*cosh(2*x) - 5*sinh(x) + 4*cosh(x)*((2 + 3*x)*sinh(x) - 1))/9. - Stefano Spezia, May 25 2023

Extensions

Definition simplified by M. F. Hasler, Oct 07 2014
Sequence extended to a(0)=0 by M. F. Hasler, Oct 08 2014

A301699 Generating function = g(g(x)), where g(x) = g.f. of Jacobsthal numbers A001045.

Original entry on oeis.org

0, 1, 2, 8, 26, 94, 330, 1178, 4186, 14914, 53098, 189122, 673530, 2398834, 8543498, 30428162, 108371354, 385970386, 1374653610, 4895901602, 17437011514, 62102837746, 221182535242, 787753281218, 2805624912090, 9992381298706, 35588393716202
Offset: 0

Views

Author

N. J. A. Sloane, Mar 29 2018

Keywords

Comments

The Dira (2017) article describes this as the self-convolution of A001045, but it is really the self-composition. - N. J. A. Sloane, Apr 07 2019, following a suggestion from Ilya Gutkovskiy. Note that A073371 is the convolution of A001045(n+1) with itself, with g.f.: g(x)^2/x^2, where g(x) = g.f. of A001045.
The Dira (2017) article contains on pages 851 and 852 several other sequences that could be added to the OEIS.

Crossrefs

Programs

  • Magma
    I:=[0,1,2,8]; [n le 4 select I[n] else 3*Self(n-1)+4*Self(n-2)-6*Self(n-3)-4*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 30 2018
  • Maple
    f:=proc(a,b) local t1;
    t1:=(x-a*x^2-b*x^3)/(1-3*a*x+(2*a^2-3*b)*x^2+3*a*b*x^3 + b^2*x^4);
    lprint(t1);
    series(t1,x,50);
    seriestolist(%);
    end;
    f(1,2);
  • Mathematica
    CoefficientList[Series[(-2 x^3 - x^2 + x) / (4 x^4 + 6 x^3 - 4 x^2 - 3 x + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 30 2018 *)

Formula

G.f.: (-2*x^3-x^2+x)/(4*x^4+6*x^3-4*x^2-3*x+1).
a(n) = 3*a(n-1) + 4*a(n-2) - 6*a(n-3) - 4*a(n-4). - Vincenzo Librandi, Mar 30 2018
Previous Showing 11-15 of 15 results.