A209485
T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 1, 4, 4, 4, 1, 5, 7, 15, 4, 1, 6, 12, 35, 38, 11, 1, 7, 17, 72, 140, 136, 15, 1, 8, 24, 128, 390, 731, 458, 43, 1, 9, 31, 205, 866, 2606, 3740, 1781, 77, 1, 10, 40, 311, 1702, 7179, 17771, 20888, 6912, 199, 1, 11, 49, 448, 3014, 16660, 60778, 128598, 118137
Offset: 1
Some solutions for n=6, k=6:
.-5...-4...-5...-6...-6...-5...-6...-4...-3...-6...-6...-3...-5...-5...-6...-4
..0....0...-2...-3...-2...-4...-5...-3...-1....5....2...-2....0....2...-2....2
.-2...-2....2....4....0...-1....4....0...-1...-5....0...-2...-3...-4....6...-4
..2....2...-2....3....1....5....3....4....1....0...-4....5....2....1...-4....4
..5....0....5...-2....1....0....4....3...-2....0....6....0....5....0....0...-4
..0....4....2....4....6....5....0....0....6....6....2....2....1....6....6....6
A229154
The clubs patterns appearing in n X n coins, with rotation allowed.
Original entry on oeis.org
1, 2, 5, 8, 12, 16, 21, 27, 33, 40, 48, 56, 65, 75, 85, 96, 108, 120, 133, 147, 161, 176, 192, 208, 225, 243, 261, 280, 300, 320, 341, 363, 385, 408, 432, 456, 481, 507, 533, 560, 588, 616, 645, 675, 705, 736, 768, 800, 833, 867, 901, 936, 972, 1008, 1045
Offset: 2
-
CoefficientList[Series[-(x^6 - 2 x^5 + x^4 - x^3 + 2 x^2 + 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 08 2013 *)
-
Vec(-x^2*(x^6-2*x^5+x^4-x^3+2*x^2+1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 08 2013
A229593
Number of boomerang patterns appearing in n X n coins, rotation not allowed.
Original entry on oeis.org
0, 2, 3, 4, 10, 12, 14, 24, 27, 30, 44, 48, 52, 70, 75, 80, 102, 108, 114, 140, 147, 154, 184, 192, 200, 234, 243, 252, 290, 300, 310, 352, 363, 374, 420, 432, 444, 494, 507, 520, 574, 588, 602, 660, 675, 690, 752, 768
Offset: 2
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Kival Ngaokrajang, Illustration of initial terms
- Kival Ngaokrajang, Illustration of 6-curve patterns
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Cf.
A074148 (Heart patterns),
A229093 (Clubs patterns - fixed orientation),
A229154 (Clubs Patterns - rotation allowed)
-
[(n-1)*Floor(n/3): n in [2..60]]; // Vincenzo Librandi, Jul 09 2015
-
CoefficientList[Series[(2 x^4 + x^3 + x^2 + 2 x)/((1 - x^3)^2 (1 - x)), {x, 0, 80}], x] (* Vincenzo Librandi, Oct 10 2013 *)
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-1,0,-2,2,0,1]^(n-2)*[0;2;3;4;10;12;14])[1,1] \\ Charles R Greathouse IV, Jun 16 2015
A238012
Number A(n,k) of partitions of k^n into parts that are at most n with at least one part of each size; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 4, 2, 0, 0, 0, 1, 7, 48, 9, 0, 0, 0, 1, 12, 310, 3042, 119, 0, 0, 0, 1, 17, 1240, 109809, 1067474, 4935, 0, 0, 0, 1, 24, 3781, 1655004, 370702459, 2215932130, 596763, 0, 0, 0, 1, 31, 9633, 14942231, 32796849930, 13173778523786, 29012104252380, 211517867, 0, 0
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
0, 1, 1, 1, 1, 1, ...
0, 0, 1, 4, 7, 12, ...
0, 0, 2, 48, 310, 1240, ...
0, 0, 9, 3042, 109809, 1655004, ...
0, 0, 119, 1067474, 370702459, 32796849930, ...
Columns k=0-10 give:
A000004,
A063524,
A237999,
A239162,
A239163,
A239164,
A239165,
A239166,
A239167,
A239168,
A239169.
-
A[0, 0] = 0;
A[n_, k_] := SeriesCoefficient[Product[1/(1-x^j), {j, 1, n}], {x, 0, k^n - n(n+1)/2}];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)
A143182
Triangle T(n,m) = 1 + abs(n-2*m), read by rows, 0<=m<=n.
Original entry on oeis.org
1, 2, 2, 3, 1, 3, 4, 2, 2, 4, 5, 3, 1, 3, 5, 6, 4, 2, 2, 4, 6, 7, 5, 3, 1, 3, 5, 7, 8, 6, 4, 2, 2, 4, 6, 8, 9, 7, 5, 3, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 11, 9, 7, 5, 3, 1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2, 2, 4, 6, 8, 10, 12, 13, 11, 9, 7, 5, 3, 1, 3, 5, 7, 9, 11, 13
Offset: 0
From _Boris Putievskiy_, Jan 15 2013: (Start)
The start of the sequence as table:
1...2...3...4...5...6...7...8...9..10..11...
2...1...2...3...4...5...6...7...8...9..10...
3...2...1...2...3...4...5...6...7...8...9...
4...3...2...1...2...3...4...5...6...7...8...
5...4...3...2...1...2...3...4...5...6...7...
6...5...4...3...2...1...2...3...4...5...6...
7...6...5...4...3...2...1...2...3...4...5...
8...7...6...5...4...3...2...1...2...3...4...
9...8...7...6...5...4...3...2...1...2...3...
10..9...8...7...6...5...4...3...2...1...2...
11.10...9...8...7...6...5...4...3...2...1...
. . .
The start of the sequence as triangle array read by rows: (End)
1;
2, 2;
3, 1, 3;
4, 2, 2, 4;
5, 3, 1, 3, 5;
6, 4, 2, 2, 4, 6;
7, 5, 3, 1, 3, 5, 7;
8, 6, 4, 2, 2, 4, 6, 8;
9, 7, 5, 3, 1, 3, 5, 7, 9;
10, 8, 6, 4, 2, 2, 4, 6, 8, 10;
11, 9, 7, 5, 3, 1, 3, 5, 7, 9, 11;
. . .
Row number r contains r numbers: r, r-2,...3,1,3,...r-2,r if r is odd,
r, r-2,...2,2,...r-2,r, if r is even. - _Boris Putievskiy_, Jan 15 2013
-
Flat(List([0..15], n-> List([0..n], k-> 1+AbsInt(n-2*k) ))); # G. C. Greubel, Jul 23 2019
-
[1+Abs(n-2*k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 23 2019
-
T[n_, m_]:= 1+Abs[(1+n-m) - (1+m)]; Table[Table[t[n, m], {m,0,n}], {n, 0, 15}]//Flatten
-
for(n=0,15, for(k=0,n, print1(1+abs(n-2*k), ", "))) \\ G. C. Greubel, Jul 23 2019
-
[[1+abs(n-2*k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 23 2019
A230267
Coins left after packing 5 curves coins patterns into fountain of coins base n.
Original entry on oeis.org
1, 3, 2, 6, 7, 9, 12, 16, 17, 23, 26, 30, 35, 41, 44, 52, 57, 63, 70, 78, 83, 93, 100, 108, 117, 127, 134, 146, 155, 165, 176, 188, 197, 211, 222, 234, 247, 261, 272, 288, 301, 315, 330, 346, 359, 377, 392, 408, 425, 443
Offset: 1
A230276
Voids left after packing 5-curves coins patterns into fountain of coins with base n.
Original entry on oeis.org
0, 1, 1, 6, 10, 16, 24, 34, 43, 57, 70, 85, 102, 121, 139, 162, 184, 208, 234, 262, 289, 321, 352, 385, 420, 457, 493, 534, 574, 616, 660, 706, 751, 801, 850, 901, 954, 1009, 1063, 1122, 1180, 1240, 1302, 1366, 1429
Offset: 1
-
A099837 := proc(n)
op(modp(n,3)+1,[2,-1,-1]) ;
end proc:
A230276 := proc(n)
-A099837(n)/3 + (-48*n+31+18*n^2+9*(-1)^n)/24 ;
end proc:
seq(A230276(n),n=1..40) ; # R. J. Mathar, Feb 28 2018
-
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 1, 1, 6, 10, 16}, 45] (* Jean-François Alcover, May 05 2023 *)
A227906
Coins left after packing heart patterns (fixed orientation) into n X n coins.
Original entry on oeis.org
2, 4, 4, 9, 6, 13, 8, 17, 10, 21, 12, 25, 14, 29, 16, 33, 18, 37, 20, 41, 22, 45, 24, 49, 26, 53, 28, 57, 30, 61, 32, 65, 34, 69, 36, 73, 38, 77, 40, 81, 42, 85, 44, 89, 46, 93, 48, 97, 50, 101, 52, 105, 54, 109, 56, 113, 58, 117, 60, 121
Offset: 2
Cf.
A008795,
A230370 (3-curves),
A074148,
A229093,
A229154 (4-curves),
A001399,
A230267,
A230276 (5-curves),
A229593,
A228949,
A229598 (6-curves).
-
With[{nn=60},Join[{2,4},Riffle[Range[4,nn,2],Range[9,2nn+1,4]]]] (* Harvey P. Dale, Feb 11 2015 *)
-
Vec(-x^2*(x^5-x^3-4*x-2)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Oct 30 2013
A074149
Sum of terms in each group in A074147.
Original entry on oeis.org
1, 6, 15, 36, 65, 114, 175, 264, 369, 510, 671, 876, 1105, 1386, 1695, 2064, 2465, 2934, 3439, 4020, 4641, 5346, 6095, 6936, 7825, 8814, 9855, 11004, 12209, 13530, 14911, 16416, 17985, 19686, 21455, 23364, 25345, 27474, 29679, 32040, 34481, 37086
Offset: 1
-
LinearRecurrence[{2,1,-4,1,2,-1},{1,6,15,36,65,114},50] (* Harvey P. Dale, Jun 22 2016 *)
-
a(n)=n^3/2 + n*(3+(-1)^n)/4 \\ Charles R Greathouse IV, Jun 11 2015
-
def A074149(n): return (n*(n**2-(n&1))>>1)+n # Chai Wah Wu, Aug 30 2022
A123663
Number of shared edges in a spiral of n unit squares.
Original entry on oeis.org
0, 1, 2, 4, 5, 7, 8, 10, 12, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 38, 40, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 60, 61, 63, 65, 67, 69, 71, 72, 74, 76, 78, 80, 82, 84, 85, 87, 89, 91, 93, 95, 97, 98, 100, 102, 104, 106, 108, 110, 112, 113, 115, 117, 119
Offset: 1
- F. Harary and H. Harborth, Extremal Animals, Journal of Combinatorics, Information & System Sciences, Vol. 1, No 1, 1-8 (1976).
- Peter Kagey, Table of n, a(n) for n = 1..10000
- Richard A. Brualdi and Geir Dahl, Frobenius-König theorem for classes of (0,+/-1)-matrices, Disc. Math. (2024) Vol. 347, Issue 6, 113951.
- Hung Phuc Hoang and Torsten Mütze, Combinatorial generation via permutation languages. II. Lattice congruences, arXiv:1911.12078 [math.CO], 2019.
-
A[1]:= 0:
for n from 2 to 100 do
if issqr(2*A[n-1]+1) or issqr(2*A[n-1]+2) then A[n]:= A[n-1]+1
else A[n]:= A[n-1]+2
fi
od:
seq(A[n],n=1..100); # Robert Israel, Oct 21 2014
-
FoldList[Plus, 0, t = Table[2, {72}]; t[[ Table[ Ceiling[n/2] Floor[n/2], {n, 2, 16}] ]]--; t] (* Robert G. Wilson v, Jan 19 2007 *)
-
a(n)=2*n - sqrtint(4*n-1) - 1 \\ Charles R Greathouse IV, Nov 29 2016
-
from math import isqrt
def A123663(n): return (m:=n<<1)-1-isqrt((m<<1)-1) # Chai Wah Wu, Jul 28 2022
-
a123663 = [0]; k = 0; a_n = 0; (1..N).to_a.each{ |i| 2.times{ k.times{ a_n += 2; a123663 << a_n }; a_n += 1; a123663 << a_n; }; k += 1}
Comments