A336626
Triangular numbers that are eight times another triangular number.
Original entry on oeis.org
0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320
Offset: 1
a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular.
a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528;
a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc.
.
From _Peter Luschny_, Oct 19 2020: (Start)
Related sequences in context, as computed by the Julia function:
n [A336623, A336624, A336625, A336626 ]
[0] [0, 0, 0, 0 ]
[1] [5, 15, 15, 120 ]
[2] [11, 66, 32, 528 ]
[3] [186, 17391, 527, 139128 ]
[4] [390, 76245, 1104, 609960 ]
[5] [6335, 20069280, 17919, 160554240 ]
[6] [13265, 87986745, 37520, 703893960 ]
[7] [215220, 23159931810, 608735, 185279454480 ]
[8] [450636, 101536627566, 1274592, 812293020528 ]
[9] [7311161, 26726541239541, 20679087, 213812329916328] (End)
- Vladimir Pletser, Table of n, a(n) for n = 1..653
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- V. Pletser, Recurrent relations for triangular multiples of other triangular numbers, Indian J. Pure Appl. Math. 53 (2022) 782-791
- Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077260,
A077261,
A077262,
A077288,
A077289,
A077290,
A077291,
A077398,
A077399,
A077400,
A077401.
-
function omnibus()
println("[A336623, A336624, A336625, A336626]")
println([0, 0, 0, 0])
t, h = 1, 1
for n in 1:999999999
d, r = divrem(t, 8)
if r == 0
d2 = 2*d
s = isqrt(d2)
d2 == s * (s + 1) && println([s, d, n, t])
end
t, h = t + h + 1, h + 1
end
end
omnibus() # Peter Luschny, Oct 19 2020
-
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [$ (1 .. 1000)])[]; #
-
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18]
A201008
Triangular numbers, T(m), that are five-sixths of another triangular number: T(m) such that 6*T(m)=5*T(k) for some k.
Original entry on oeis.org
0, 55, 26565, 12804330, 6171660550, 2974727580825, 1433812522297155, 691094661019647940, 333106192798948009980, 160556493834431921162475, 77387896922003387052303025, 37300805759911798127288895630
Offset: 0
6*0 = 5*0;
6*55 = 5*66;
6*26565 = 5*31878;
6*12804330 = 5*15365196.
-
I:=[0, 55, 26565]; [n le 3 select I[n] else 483*Self(n-1)-483*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 22 2011
-
LinearRecurrence[{483,-483,1},{0,55,26565},30] (* Vincenzo Librandi, Dec 22 2011 *)
-
makelist(expand(((11-2*sqrt(30))^(2*n+1)+(11+2*sqrt(30))^(2*n+1)-22)/192), n, 0, 11); /* Bruno Berselli, Dec 21 2011 */
-
concat(0,Vec(55/(1-x)/(1-482*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 23 2011
A341895
Indices of triangular numbers that are ten times other triangular numbers.
Original entry on oeis.org
0, 4, 20, 39, 175, 779, 1500, 6664, 29600, 56979, 253075, 1124039, 2163720, 9610204, 42683900, 82164399, 364934695, 1620864179, 3120083460, 13857908224, 61550154920, 118481007099, 526235577835, 2337285022799, 4499158186320, 19983094049524, 88755280711460, 170849530073079, 758831338304095, 3370363382012699
Offset: 1
a(2) = 4 is a term because its triangular number, T(a(2)) = 4*5 / 2 = 10 is ten times a triangular number.
a(4) = 38*a(1) - a(-2) + 18 = 38*0 - (-21) + 18 = 39, etc.
Cf.
A336623,
A336624,
A336626,
A336625,
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)]) ; #
-
Rest@ CoefficientList[Series[x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 30}], x] (* Michael De Vlieger, May 19 2022 *)
A068085
Numbers k such that k and 10*k are both triangular numbers.
Original entry on oeis.org
0, 1, 21, 78, 1540, 30381, 112575, 2220778, 43809480, 162333171, 3202360435, 63173239878, 234084320106, 4617801526591, 91095768094695, 337549427259780, 6658866598983886, 131360034419310411, 486746040024282753, 9602081017933237120, 189421078536877518066, 701887452165588470145
Offset: 1
21 and 210 are both triangular numbers.
- Georg Fischer, Table of n, a(n) for n = 1..1000
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1442,-1442,0,-1,1).
-
f := gfun:-rectoproc({a(-3) = 21, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 21, a(n) = 1442*a(n-3)-a(n-6)+99}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ; # Vladimir Pletser, Feb 26 2021
-
a[0]=0; a[1]=1; a[2]=21; a[n_] := a[n]=(99+1442a[n-3]+57Sqrt[(1+8a[n-3])(1+80a[n-3])])/2
A341893
Indices of triangular numbers that are one-tenth of other triangular numbers.
Original entry on oeis.org
0, 1, 6, 12, 55, 246, 474, 2107, 9360, 18018, 80029, 355452, 684228, 3039013, 13497834, 25982664, 115402483, 512562258, 986657022, 4382255359, 19463867988, 37466984190, 166410301177, 739114421304, 1422758742216, 6319209189385, 28066884141582, 54027365220036, 239963538895471, 1065802482958830, 2051617119619170
Offset: 1
a(4) = 12 is a term because its triangular number, (12*13) / 2 = 78 is one-tenth of 780, the triangular number of 39.
a(4) = 38 a(1) - a(-2) +18 = 0 - 6 +18 = 12 ;
a(5) = 38 a(2) - a(-1) + 18 = 38*1 - 1 +18 = 55.
- Vladimir Pletser, Table of n, a(n) for n = 1..1000
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- V. Pletser, Recurrent relations for triangular multiples of other triangular numbers, Indian J. Pure Appl. Math. 53 (2022) 782-791
- Index entries for linear recurrences with constant coefficients, signature (1,38,-38,-1,1).
Cf.
A336623,
A336624,
A336626,
A336625,
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(-3) = 6, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 6, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ;
-
Rest@ CoefficientList[Series[(x^2*(1 + 5*x + 6*x^2 + 5*x^3 + x^4))/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 31}], x] (* Michael De Vlieger, May 19 2022 *)
A200998
Triangular numbers, T(m), that are three-quarters of another triangular number: T(m) such that 4*T(m)=3*T(k) for some k.
Original entry on oeis.org
0, 21, 4095, 794430, 154115346, 29897582715, 5799976931385, 1125165627105996, 218276331681631860, 42344483180609474865, 8214611460706556491971, 1593592278893891349967530, 309148687493954215337208870, 59973251781548223884068553271
Offset: 0
4*0 = 3*0.
4*21 = 3*28.
4*4095 = 3*5640.
4*794430 = 3*1059240.
-
I:=[0,21]; [n le 2 select I[n] else 194*Self(n-1) - Self(n-2) + 21: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
-
LinearRecurrence[{195, -195, 1}, {0, 21, 4095}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
-
concat(0, Vec(21/(1 - 195*x + 195*x^2 - x^3) + O(x^99))) \\ Charles R Greathouse IV, Dec 20 2011
A201003
Triangular numbers, T(m), that are four-fifths of another triangular number: T(m) such that 5*T(m) = 4*T(k) for some k.
Original entry on oeis.org
0, 36, 11628, 3744216, 1205625960, 388207814940, 125001710784756, 40250162664876528, 12960427376379457296, 4173217365031520372820, 1343763031112773180590780, 432687522800947932629858376, 139324038578874121533633806328, 44861907734874666185897455779276
Offset: 0
5*0 = 4*0;
5*36 = 4*45;
5*11628 = 4*14535;
5*3744216 = 4*4680270.
-
m:=20; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(36*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
triNums = Table[(n^2 + n)/2, {n, 0, 4999}]; Select[triNums, MemberQ[triNums, (5/4)#] &] (* Alonso del Arte, Dec 20 2011 *)
CoefficientList[Series[-36 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
LinearRecurrence[{323,-323,1},{0,36,11628},20] (* Harvey P. Dale, Dec 21 2015 *)
-
concat(0, Vec(36*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
A259078
Heptagonal numbers (A000566) that are other heptagonal numbers divided by 2.
Original entry on oeis.org
6426, 9875715583923, 15176968126834688342280, 23323916081375479417207129139097, 35844119643974208514403771705730853759974, 55085128439364942192092971212729781713850848998511, 84654649223375294035879228202426981713600292140166013136308
Offset: 1
6426 is in the sequence because 6426 is the 51st heptagonal number, and 2*6426 is the 72nd heptagonal number.
-
LinearRecurrence[{1536796803,-1536796803,1},{6426,9875715583923,15176968126834688342280},20] (* Harvey P. Dale, May 17 2018 *)
-
Vec(-189*x*(x^2+1372105*x+34)/((x-1)*(x^2-1536796802*x+1)) + O(x^20))
A259079
Octagonal numbers (A000567) that are other octagonal numbers divided by 2.
Original entry on oeis.org
280, 373212840, 497012764340408, 661878856450449219400, 881433339438556519000044120, 1173817118196415977287174306335208, 1563188689740940473437573487667885475320, 2081720262768492984525248323578863263574296200
Offset: 1
280 is in the sequence because 280 is the 10th octagonal number, and 2*280 is the 14th octagonal number.
-
LinearRecurrence[{1331715,-1331715,1},{280,373212840,497012764340408},20] (* Harvey P. Dale, Dec 04 2015 *)
-
Vec(-8*x*(x^2+41580*x+35)/((x-1)*(x^2-1331714*x+1)) + O(x^20))
A008845
Numbers k such that k+1 and k/2+1 are squares.
Original entry on oeis.org
0, 48, 1680, 57120, 1940448, 65918160, 2239277040, 76069501248, 2584123765440, 87784138523760, 2982076586042448, 101302819786919520, 3441313796169221280, 116903366249966604048, 3971273138702695316400, 134906383349641674153600, 4582845760749114225906048
Offset: 0
48+1 = 49 = 7^2 and 48/2+1 = 24+1 = 25 = 5^2.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
-
a:=[0,48,1680];; for n in [4..20] do a[n]:=35*a[n-1]-35*a[n-2] +a[n-3]; od; a; # G. C. Greubel, Sep 13 2019
-
I:=[0,48]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2)+48: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
-
seq(coeff(series(48*x/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 0..20); # G. C. Greubel, Sep 13 2019
-
LinearRecurrence[{35,-35,1},{0,48,1680},20] (* Harvey P. Dale, May 24 2014 *)
-
concat(0, Vec(48*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
-
def A008845_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(48*x/((1-x)*(1-34*x+x^2))).list()
A008845_list(20) # G. C. Greubel, Sep 13 2019
Comments