cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A102887 Decimal expansion of Integral_{x=0..1} log(gamma(x))^2 dx.

Original entry on oeis.org

1, 8, 6, 6, 3, 1, 7, 0, 8, 3, 7, 9, 3, 5, 6, 2, 0, 8, 0, 9, 9, 2, 9, 6, 7, 9, 3, 7, 9, 7, 8, 2, 8, 9, 7, 3, 9, 8, 0, 0, 4, 0, 4, 1, 8, 6, 7, 9, 5, 3, 3, 8, 8, 0, 9, 4, 0, 5, 5, 1, 4, 4, 9, 5, 9, 3, 0, 4, 0, 9, 6, 5, 9, 8, 4, 9, 0, 5, 6, 3, 0, 3, 4, 7, 5, 5, 2, 3, 9, 8, 6, 0, 2, 9, 2, 5, 7, 2, 5, 0, 8, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jan 15 2005

Keywords

Comments

Also equals (1/6)*log(2*Pi)^2 + 2*log(A)*log(2*Pi) - (1/6)*gamma*log(2*Pi) + Pi^2/48 + 2*gamma*log(A) + zeta''(2)/(2*Pi^2) (with A the Glaisher-Kinkelin constant). - Jean-François Alcover, Apr 29 2013

Examples

			1.8663170837935620809929679379782897398...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 236.

Crossrefs

Programs

  • Mathematica
    EulerGamma^2/12 + Pi^2/48 + (EulerGamma*Log[2*Pi])/6 + Log[2*Pi]^2/3 - ((EulerGamma + Log[2*Pi])*Zeta'[2])/Pi^2 + Zeta''[2]/(2*Pi^2)
  • PARI
    intnum(x=0,1, log(gamma(x))^2) \\ Michel Marcus, Aug 27 2015

Formula

Equals gamma^2/12 + Pi^2/48 + (gamma*log(2*Pi))/6 + log(2*Pi)^2/3 - ((gamma + log(2*Pi))*zeta'(2))/Pi^2 + zeta''(2)/(2*Pi^2).
Equals -Integral_{x=0..1, y=0..1} log(gamma(x*y))^2/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 in Glasser (2019).) - Petros Hadjicostas, Jun 30 2020

A257549 Decimal expansion of zeta''(0) (negated).

Original entry on oeis.org

2, 0, 0, 6, 3, 5, 6, 4, 5, 5, 9, 0, 8, 5, 8, 4, 8, 5, 1, 2, 1, 0, 1, 0, 0, 0, 2, 6, 7, 2, 9, 9, 6, 0, 4, 3, 8, 1, 9, 8, 9, 9, 4, 9, 1, 0, 1, 6, 0, 9, 1, 9, 8, 8, 1, 1, 6, 9, 8, 6, 8, 2, 8, 0, 8, 5, 7, 7, 6, 0, 0, 7, 8, 3, 9, 8, 0, 8, 5, 3, 4, 2, 7, 6, 4, 8, 7, 0, 5, 6, 0, 3, 2, 8, 0, 8, 3, 9, 2, 4, 7, 2, 6, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 29 2015

Keywords

Comments

Essentially the same as A245273. - R. J. Mathar, Apr 30 2015

Examples

			2.00635645590858485121010002672996043819899491016091988116986828...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(2, 0), 120); # Vaclav Kotesovec, Apr 29 2015
  • Mathematica
    RealDigits[ StieltjesGamma[1] + EulerGamma^2/2 - Pi^2/24 - (1/2)*(Log[2] + Log[Pi])^2, 10, 104] // First
  • PARI
    -zeta''(0) \\ Charles R Greathouse IV, Mar 10 2016

Formula

zeta''(0) = gamma_1 + gamma^2/2 - Pi^2/24 - (1/2)*(log(2)+log(Pi))^2, where gamma_1 is the first Stieltjes constant.

A258162 Decimal expansion of the log Gamma integral LG_3 = Integral_{0..1} log(Gamma(x))^3 dx.

Original entry on oeis.org

5, 7, 4, 0, 3, 8, 8, 8, 0, 7, 2, 2, 9, 4, 7, 4, 2, 8, 0, 0, 1, 9, 5, 7, 1, 6, 8, 8, 1, 0, 2, 4, 6, 1, 4, 6, 2, 9, 6, 1, 0, 1, 3, 0, 0, 7, 4, 5, 4, 8, 7, 3, 3, 3, 1, 4, 2, 5, 4, 0, 2, 4, 5, 1, 2, 3, 8, 8, 8, 4, 3, 8, 7, 1, 7, 7, 1, 2, 5, 0, 2, 6, 1, 0, 6, 2, 6, 2, 1, 6, 6, 6, 2, 8, 7, 2, 3, 3, 0, 5, 1, 5, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, May 22 2015

Keywords

Examples

			5.7403888072294742800195716881024614629610130074548733314254...
		

Crossrefs

Cf. A075700 (LG_1), A102887 (LG_2), A258163 (LG_4), A258164 (LG_5).

Programs

  • Maple
    evalf(Int(log(GAMMA(x))^3,x=0..1),120); # Vaclav Kotesovec, May 22 2015
  • Mathematica
    LG3 = NIntegrate[LogGamma[x]^3, {x, 0, 1}, WorkingPrecision -> 104]; RealDigits[LG3] // First
  • PARI
    intnum(x=0, 1, log(gamma(x))^3) \\ Michel Marcus, Oct 24 2017

A122914 Decimal expansion of (1 + log(2*Pi))/2, the entropy of the standard normal distribution.

Original entry on oeis.org

1, 4, 1, 8, 9, 3, 8, 5, 3, 3, 2, 0, 4, 6, 7, 2, 7, 4, 1, 7, 8, 0, 3, 2, 9, 7, 3, 6, 4, 0, 5, 6, 1, 7, 6, 3, 9, 8, 6, 1, 3, 9, 7, 4, 7, 3, 6, 3, 7, 7, 8, 3, 4, 1, 2, 8, 1, 7, 1, 5, 1, 5, 4, 0, 4, 8, 2, 7, 6, 5, 6, 9, 5, 9, 2, 7, 2, 6, 0, 3, 9, 7, 6, 9, 4, 7, 4, 3, 2, 9, 8, 6, 3, 5, 9, 5, 4, 1, 9, 7, 6, 2, 2, 0
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Sep 18 2006

Keywords

Comments

For a normal distribution with standard deviation sigma, add log(sigma). - Stanislav Sykora, Jan 15 2017

Examples

			1.4189385332046727417803297364056176398613974736377834128171515404827656959...
		

Crossrefs

Partial quotients in A122915.

Programs

  • Mathematica
    RealDigits[(1 + Log[2 Pi])/2, 10, 80]

Formula

Equals (1 + log(2*Pi))/2 = 1/2 - A075700 = (1 + A061444)/2.
Equals -zeta(0) - zeta'(0). - Peter Luschny, May 16 2020
Equals 1 + G'(1), where G(x) is the Barnes G-function. - Amiram Eldar, Jun 08 2022

Extensions

a(80) corrected by Georg Fischer, Jul 10 2021

A258163 Decimal expansion of the log Gamma integral LG_4 = Integral_{0..1} log(Gamma(x))^4 dx.

Original entry on oeis.org

2, 3, 3, 8, 9, 5, 1, 4, 4, 6, 5, 5, 1, 6, 8, 0, 1, 6, 1, 9, 6, 0, 0, 5, 5, 9, 1, 0, 5, 0, 5, 9, 1, 4, 0, 6, 5, 9, 0, 0, 7, 5, 2, 7, 6, 8, 3, 1, 9, 8, 4, 6, 4, 6, 6, 7, 7, 8, 5, 4, 5, 2, 0, 5, 4, 5, 6, 3, 6, 4, 7, 9, 5, 2, 5, 5, 8, 0, 1, 4, 8, 8, 8, 1, 0, 1, 7, 7, 7, 0, 4, 0, 3, 1, 5, 9, 8, 2, 6, 4, 8, 6, 5, 7, 9
Offset: 2

Views

Author

Jean-François Alcover, May 22 2015

Keywords

Examples

			23.389514465516801619600559105059140659007527683198464667785452...
		

Crossrefs

Cf. A075700 (LG_1), A102887 (LG_2), A258162 (LG_3), A258164 (LG_5).

Programs

  • Maple
    evalf(Int(log(GAMMA(x))^4,x=0..1),120); # Vaclav Kotesovec, May 22 2015
  • Mathematica
    LG4 = NIntegrate[LogGamma[x]^4, {x, 0, 1}, WorkingPrecision -> 105];
    RealDigits[LG4] // First

A258164 Decimal expansion of the log Gamma integral LG_5 = Integral_{0..1} log(Gamma(x))^5 dx.

Original entry on oeis.org

1, 1, 8, 2, 9, 8, 7, 9, 3, 1, 8, 4, 5, 5, 1, 2, 5, 8, 7, 5, 4, 1, 6, 7, 2, 9, 0, 7, 2, 9, 2, 9, 6, 4, 4, 8, 4, 9, 0, 2, 9, 2, 8, 5, 2, 9, 0, 1, 0, 8, 2, 0, 6, 5, 7, 4, 7, 3, 4, 1, 1, 0, 4, 6, 0, 5, 3, 5, 5, 7, 2, 1, 9, 9, 6, 5, 6, 3, 2, 6, 3, 5, 3, 9, 0, 1, 6, 7, 9, 8, 8, 4, 3, 9, 3, 4, 7, 8, 8, 6, 4, 5, 5, 5, 3
Offset: 3

Views

Author

Jean-François Alcover, May 22 2015

Keywords

Examples

			118.2987931845512587541672907292964484902928529010820657473411046...
		

Crossrefs

Cf. A075700 (LG_1), A102887 (LG_2), A258162 (LG_3), A258163 (LG_4).

Programs

  • Maple
    evalf(Int(log(GAMMA(x))^5,x=0..1),120); # Vaclav Kotesovec, May 22 2015
  • Mathematica
    LG5 = NIntegrate[LogGamma[x]^5, {x, 0, 1}, WorkingPrecision -> 105]; RealDigits[LG5] // First

A261508 Decimal expansion of -zeta'''(0).

Original entry on oeis.org

6, 0, 0, 4, 7, 1, 1, 1, 6, 6, 8, 6, 2, 2, 5, 4, 4, 4, 7, 7, 6, 1, 0, 6, 0, 8, 1, 3, 3, 6, 6, 3, 7, 5, 2, 8, 5, 4, 6, 1, 8, 0, 7, 6, 6, 8, 2, 9, 5, 9, 8, 0, 1, 3, 2, 8, 9, 3, 0, 8, 1, 5, 4, 1, 3, 0, 8, 6, 0, 4, 3, 3, 7, 2, 0, 7, 3, 4, 8, 5, 5, 4, 0, 2, 3, 9, 3, 8, 2, 5, 1, 9, 4, 6, 5, 6, 6, 7, 7, 5, 7, 3, 3, 5, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 22 2015

Keywords

Examples

			6.004711166862254447761060813366375285461807668295980132893...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(3, 0), 120);
  • Mathematica
    RealDigits[3*Log[2*Pi]*StieltjesGamma[1] + 3*EulerGamma*StieltjesGamma[1] + 3/2*StieltjesGamma[2] - Zeta[3] - 1/2*Log[2*Pi]^3 - 1/8*Pi^2*Log[2*Pi] + 3/2*EulerGamma^2*Log[2*Pi] + EulerGamma^3, 10, 120][[1]]
  • PARI
    -zeta'''(0) \\ Charles R Greathouse IV, Mar 10 2016

A122915 Partial quotients of (1 + Log[2 Pi])/2, the entropy of the standard normal distribution.

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 2, 8, 1, 8, 4, 1, 4, 1, 3, 18, 1, 7, 1, 4, 2, 4, 2, 1, 2, 1, 4, 1, 1, 17, 1, 1, 1, 23, 1, 1, 2, 28, 3, 2, 4, 1, 2, 3, 1, 39, 12, 2, 1, 1, 120, 1, 6, 1, 5, 1, 1, 1, 1, 1, 1, 4, 3, 1, 1, 5, 1, 5, 14, 1, 3, 3, 1, 5, 1, 12, 2, 7, 2, 1
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Sep 18 2006

Keywords

Comments

a = 1/2 - A075700; a = (1 + A061444)/2.

Crossrefs

Decimal expansion in A122914.

Programs

  • Mathematica
    ContinuedFraction[(1 + Log[2 Pi])/2, 80]

Formula

a = (1 + Log[2 Pi])/2

A248859 Decimal expansion of log(sqrt(2*Pi))/e, a constant appearing in the asymptotic expansion of (n!)^(1/n).

Original entry on oeis.org

3, 3, 8, 0, 5, 8, 5, 9, 4, 0, 6, 6, 2, 3, 9, 9, 0, 2, 3, 7, 0, 2, 7, 9, 4, 5, 0, 9, 6, 1, 5, 1, 8, 8, 7, 4, 2, 6, 8, 5, 1, 3, 7, 5, 8, 3, 4, 0, 2, 0, 7, 8, 2, 5, 1, 6, 8, 6, 1, 8, 1, 2, 4, 9, 6, 9, 8, 6, 5, 8, 9, 3, 0, 4, 6, 0, 2, 4, 6, 3, 4, 0, 3, 9, 9, 2, 7, 5, 5, 2, 7, 6, 6, 3, 9, 2, 0, 5, 8, 6, 5, 8, 1, 6, 2
Offset: 0

Views

Author

Jean-François Alcover, Mar 03 2015

Keywords

Examples

			0.3380585940662399023702794509615188742685137583402...
		

Crossrefs

Cf. A001113, A019762, A061444, A075700 (log(sqrt(2*Pi))).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Log(2*Pi(R))/(2*Exp(1)); // G. C. Greubel, Oct 07 2018
  • Mathematica
    RealDigits[Log[Sqrt[2*Pi]]/E, 10, 105] // First
  • PARI
    log(2*Pi)/2/exp(1) \\ Charles R Greathouse IV, Apr 20 2016
    

Formula

Equals lim_{n -> infinity} (n!)^(1/n) - n/e - log(n)/(2*e).
Equals A075700/A001113 = A061444/A019762. - Amiram Eldar, Apr 12 2022

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)
Previous Showing 21-30 of 33 results. Next