cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A304434 Numbers n such that n^4 is the sum of two distinct perfect powers > 1 (x^k + y^m; x, y, k, m >= 2).

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 13, 14, 15, 17, 20, 24, 25, 26, 28, 29, 30, 34, 35, 36, 37, 39, 40, 41, 42, 45, 48, 50, 51, 52, 53, 55, 57, 58, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 78, 80, 82, 85, 87, 89, 90, 91, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113
Offset: 1

Views

Author

M. F. Hasler, May 22 2018

Keywords

Comments

Motivated by the search of solutions to a^n + b^(2n+2)/4 = (perfect square), which arises when searching solutions to x^n + y^(n+1) = z^(n+2) of the form x = a*z, y = b*z. It turns out that many solutions are of the form a^n = d (b^(n+1) + d), where d is a perfect power.

Examples

			3^4 = 2^5 + 7^2; 5^4 = 7^2 + 24^2, ...
		

Crossrefs

Cf. A304433, A001597 (perfect powers), A076467 (third or higher powers).

Programs

  • Maple
    N:= 200: # to get terms <= N
    N4:= N^4:
    P:= {seq(seq(x^k,k=3..floor(log[x](N4))),x=2..floor(N4^(1/3)))}:
    filter:= proc(n) local n4, Pp;
      n4:= n^4;
      if remove(t -> subs(t,x)<=1 or subs(t,y)<=1 or subs(t,x-y)=0, [isolve(x^2+y^2=n4)]) <> [] then return true fi;
      Pp:= map(t ->n4-t, P minus {n4, n4/2});
      (Pp intersect P <> {}) or (select(issqr,Pp) <> {})
    end proc:
    A:= select(filter, [$2..N]); # Robert Israel, May 24 2018
  • PARI
    L=200^4; P=List(); for(x=2, sqrtnint(L,3), for(k=3, logint(L, x), listput(P, x^k))); #P=Set(P) \\ This P = A076467 \ {1} = A111231 \ {0} up to limit L.
    is_A304434(n)={for(i=1, #s=sum2sqr(n=n^4), vecmin(s[i])>1 && s[i][1]!=s[i][2] && return(1)); for(i=1, #P, n>P[i]||return; ispower(n-P[i])&& P[i]*2 != n && return(1))} \\ The above P must be computed up to L >= n^4. For sum2sqr() see A133388.

A340642 Perfect powers such that the two immediately adjacent perfect powers both have an exponent greater than 2.

Original entry on oeis.org

4, 9, 25, 225, 676, 2116, 6724, 7921, 8100, 16641, 104329, 131044, 160801, 176400, 372100, 389376, 705600, 4096576, 7306209, 7884864, 47444544, 146385801, 254817369, 373262400, 607622500, 895804900, 1121580100, 1330936324, 1536875209, 2097182025, 2258435529, 2749953600
Offset: 1

Views

Author

Hugo Pfoertner, Jan 14 2021

Keywords

Comments

Apparently, all known terms (checked through 10^18) are squares with maximum exponent 2, i.e., terms of A111245 (squares that are not a higher power). This would imply that of 3 immediately adjacent perfect powers, at least one is a term of A111245. Is there a known counterexample of 3 consecutive perfect powers, none of which is in A111245?

Examples

			The first terms, assuming 1 being at least a cube:
.
  n   p1  x^p1  p2  a(n)  p3  z^p3
                   =y^p2
  1  >2     1   2     4   3     8
  2   3     8   2     9   4    16
  3   4    16   2    25   3    27
  4   3   216   2   225   5   243
  5   4   625   2   676   6   729
		

Crossrefs

Programs

  • PARI
    a340642(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(p2>2&p0>2, print1(n1,", ")); n2=n1; n1=n; p2=p1; p1=p0))};
    a340642(50000000)

A076468 Perfect powers m^k where k >= 4.

Original entry on oeis.org

1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 3125, 4096, 6561, 7776, 8192, 10000, 14641, 15625, 16384, 16807, 19683, 20736, 28561, 32768, 38416, 46656, 50625, 59049, 65536, 78125, 83521, 100000, 104976, 117649
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2002

Keywords

Comments

If p|n then at least p^4|n.
Subsequence of A036967. - R. J. Mathar, May 27 2011

Crossrefs

Programs

  • Haskell
    import qualified Data.Set as Set (null)
    import Data.Set (empty, insert, deleteFindMin)
    a076468 n = a076468_list !! (n-1)
    a076468_list = 1 : f [2..] empty where
       f xs'@(x:xs) s | Set.null s || m > x ^ 4 = f xs $ insert (x ^ 4, x) s
                      | m == x ^ 4  = f xs s
                      | otherwise = m : f xs' (insert (m * b, b) s')
                      where ((m, b), s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 19 2013
    
  • Mathematica
    a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 3, a = Append[a, n]; Print[n]], {n, 2, 131071}]; a
  • Python
    from sympy import mobius, integer_nthroot
    def A076468(n):
        def f(x): return int(n+2+x-integer_nthroot(x,4)[0]-(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,9)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]+integer_nthroot(x,3*k)[0]-3) for k in range(5,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 3 - zeta(2) - zeta(3) + Sum_{k>=2} mu(k)*(3 - zeta(k) - zeta(2*k) - zeta(3*k)) = 1.1473274274... . - Amiram Eldar, Dec 03 2022

A076469 Perfect powers m^k where k >= 5.

Original entry on oeis.org

1, 32, 64, 128, 243, 256, 512, 729, 1024, 2048, 2187, 3125, 4096, 6561, 7776, 8192, 15625, 16384, 16807, 19683, 32768, 46656, 59049, 65536, 78125, 100000, 117649, 131072, 161051, 177147, 248832, 262144, 279936, 371293, 390625, 524288, 531441
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2002

Keywords

Comments

If p|n when at least p^5|n.

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[ If[ Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]] > 4, a = Append[a, n]; Print[n]], {n, 2, 537823}]; a
  • Python
    from sympy import mobius, integer_nthroot
    def A076469(n):
        def f(x): return int(n+3+x-(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,8)[0]-integer_nthroot(x,9)[0]-integer_nthroot(x,12)[0]+sum(mobius(k)*(integer_nthroot(x,k)[0]+integer_nthroot(x,k<<1)[0]+integer_nthroot(x,3*k)[0]+integer_nthroot(x,k<<2)[0]-4) for k in range(5,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 4 - zeta(2) - zeta(3) - zeta(4) + Sum_{k>=2} mu(k)*(4 - zeta(k) - zeta(2*k) - zeta(3*k) - zeta(4*k)) = 1.06932853458... . - Amiram Eldar, Dec 03 2022

A226777 Higher powers that are sums of two distinct higher powers.

Original entry on oeis.org

243, 2744, 6561, 177147, 185193, 474552, 614656, 810000, 941192, 1124864, 1419857, 1500625, 3241792, 4782969, 7962624, 11239424, 16003008, 17850625, 21952000, 26873856, 28372625, 52200625, 68574961, 82312875, 117649000, 129140163, 162771336, 200201625, 238328000
Offset: 1

Views

Author

Robert Israel, Jun 17 2013

Keywords

Comments

x is in the sequence iff there are distinct y,z such that x = y + z and x,y,z are all in A076467.

Examples

			243 is in the sequence because 243 = 3^5 = 3^3 + 6^3.
		

Programs

  • Haskell
    import qualified Data.Set as Set (null, split, filter)
    import Data.Set (Set, empty, insert, member)
    a226777 n = a226777_list !! (n-1)
    a226777_list = f a076467_list empty where
       f (x:xs) s | Set.null $ Set.filter ((`member` s) . (x -)) s'
                              = f xs (x `insert` s)
                  | otherwise = x : f xs (x `insert` s)
                  where (s', _) = Set.split (x `div` 2) s
    -- Reinhard Zumkeller, Sep 13, Jun 19 2013
  • Maple
    N :=  10^12: # to get terms up to N
    S := {seq(seq(a^x, a=1 .. floor(N^(1/x))), x = 3 .. floor(log[2](N)))}:
    f:= proc(n) local L; L:= S[1..n-1] minus {S[n]/2}; nops(map2(`-`,S[n],L) intersect L) > 0 end proc;
    A:= map(t -> S[t], select(f,[$1..nops(S)]));
  • Mathematica
    max = 3*10^8; pp = Join[{1}, Table[n^k, {k, 3, Floor[Log[2, max]]}, {n, 2, Floor[max^(1/k)]}] // Flatten // Union]; Select[Total /@ Subsets[pp, {2}], MemberQ[pp, #]&] // Union (* Jean-François Alcover, Feb 14 2018 *)

A261782 Powers C^z = A^x + B^y with positive integers A,B,C,x,y,z such that x,y,z > 2.

Original entry on oeis.org

16, 32, 64, 128, 243, 256, 512, 1024, 2048, 2744, 4096, 6561, 8192, 16384, 32768, 65536, 131072, 177147, 185193, 262144, 474552, 524288, 614656, 810000, 941192, 1048576, 1124864, 1419857, 1500625, 2097152, 3241792, 4194304
Offset: 1

Views

Author

Anatoly E. Voevudko, Aug 31 2015

Keywords

Comments

Beal's conjecture states that A, B, and C have a common prime factor.
Theorem. If A, B are odd and x, y are even, Beal's conjecture has no counterexample. Proof: Let D be odd, D > 1 and let w be even, w > 2. Then D^w == 9 (mod 24) while D == 0 (mod 3); otherwise, D^w == 1 (mod 24) (trivial). Any even C^z == {0; 8; 16} (mod 24): if C == 0 (mod 3), C^z == 0 (mod 24); if C == 1 (mod 3), C^z == 16 (mod 24); if C == 2 (mod 3), C^z == 8 (mod 24), while z is odd, and C^z == 16 (mod 24), while z is even (trivial). But C^z == (x'+y') (mod 24) where A^x = x' (mod 24), B^y = y' (mod 24); since (x'+y') = {2; 10; 18}, C^z == {2; 10; 18} (mod 24), which cannot be a counterexample to Beal's conjecture. - Sergey Pavlov, May 08 2021

Examples

			2^3 + 2^3 = 2^4 = 16, so 16 is in the sequence.
		

Crossrefs

Subsequence of A076467.
Cf. A245713.

Programs

  • PARI
    is(n)=if(ispower(n)<3, return(0)); for(x=3,logint((n+1)\2,2), for(A=2,sqrtnint(n,x), if(ispower(n-A^x)>2, return(1)))); 0 \\ Charles R Greathouse IV, Sep 03 2015
    
  • PARI
    list(lim)=my(v=List(),u=v,t); for(z=3,logint(lim\=1,2), for(C=2,sqrtnint(lim,z), listput(v,C^z))); v=Set(v); for(i=1,#v, for(j=i,#v, t=v[i]+v[j]; if(t>lim, break); if(setsearch(v,t), listput(u,t)))); Set(u) \\ Charles R Greathouse IV, Sep 03 2015

A330980 a(n) = (p1 + p2)/216 such that p1 >= 5 and p2 = p1 + 2 are twin primes and p1 + p2 is a k-th power with k >= 3.

Original entry on oeis.org

1, 1296, 24389, 274625, 531441, 970299, 2343750, 2515456, 4492125, 5268024, 5451776, 6967871, 8000000, 18821096, 25672375, 27270901, 32461759, 37748736, 41421736, 43243551, 50653000, 64000000, 69426531, 80062991, 81746504, 82881856, 94818816, 100663296
Offset: 1

Views

Author

Hugo Pfoertner, Jan 05 2020

Keywords

Comments

The values of k corresponding to the first terms are: 3, 7, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, ...

Examples

			a(1) = 1: p1 = 107 and p2 = 109 is the first pair with a sum that is a 3rd power, 216=6^3;
a(2) = 1296: p1 = 1296*108 - 1 = 139967, p2 = 1296*108 + 1 = 139969, p1 + p2 = 279936 = 6^7.
		

Crossrefs

Programs

  • PARI
    my(pp=5,j); forprime(p=7,10000000000, if(p-pp==2, if(j=ispower(p+pp), if(j>2, print1((p+pp)/216,", ")))); pp=p)

A090081 Cube root-smooth numbers: numbers k whose largest prime factor does not exceed the cube root of k.

Original entry on oeis.org

1, 8, 16, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 343, 350, 360, 375, 378, 384, 392, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 500, 504, 512, 525
Offset: 1

Views

Author

Labos Elemer, Nov 21 2003

Keywords

Comments

What is the asymptotic growth of this sequence?
Answer: a(n) ~ k*n, where k = 1/A175475. That is, about 4.8% of numbers are in this sequence. - Charles R Greathouse IV, Jul 14 2014

Examples

			378 = 2 * 3^3 * 7 is a term of the sequence since 7 < 7.23... = 378^(1/3).
		

Crossrefs

Programs

  • Maple
    filter:= n ->
    evalb(max(seq(f[1],f=ifactors(n)[2]))^3 <= n):
    select(filter, [$1..1000]); # Robert Israel, Jul 14 2014
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; Do[If[ !Greater[ma[n], gy=n^(1/3)//N]&&!PrimeQ[n], Print[n(*, {gy, ma[n]}*)]], {n, 1, 1000}]
    Select[Range[1000], (FactorInteger[#][[-1,1]])^3 <= # &] (* T. D. Noe, Sep 14 2011 *)
    Select[Range[1000],FactorInteger[#][[-1,1]]<=CubeRoot[#]&] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);f[#f]^3<=n \\ Charles R Greathouse IV, Sep 14 2011
    
  • Python
    from sympy import primefactors
    def ok(n):
        if n==1 or max(primefactors(n))**3<=n: return True
        else: return False
    print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 23 2017

Formula

Solutions to A006530(n) <= n^(1/3).

A340585 Noncube perfect powers.

Original entry on oeis.org

4, 9, 16, 25, 32, 36, 49, 81, 100, 121, 128, 144, 169, 196, 225, 243, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2048, 2116, 2187, 2209, 2304, 2401, 2500
Offset: 1

Views

Author

Hugo Pfoertner, Jan 12 2021

Keywords

Comments

This was the original definition of A239870. However, the true definition of that sequence seems to be slightly different.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local g;
      g:= igcd(op(ifactors(n)[2][..,2]));
      g > 1 and (g mod 3 <> 0)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jan 12 2021
  • Mathematica
    Select[Range[2, 2500], (g = GCD @@ FactorInteger[#][[;; , 2]]) > 1 && !Divisible[g, 3] &] (* Amiram Eldar, Jan 12 2021 *)
  • PARI
    for(n=2,2500,if( ispower(n) % 3, print1(n,", ")))
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A340585(n):
        def f(x): return int(n+x-isqrt(x)+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(5,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 1 - zeta(3) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 1 - A002117 + A072102 = 0.6724074652... - Amiram Eldar, Jan 12 2021

A226950 Higher powers having partitions into distinct higher powers in more than one way.

Original entry on oeis.org

7449150177, 8936757492481, 11587386200625, 22449633661000, 30511719124992, 36443545848801, 283680450809856, 583096733580816, 613579106939841, 3958783819215057, 4098048384032001, 4556608567054336, 13469350037585841, 23887131799781376, 36604958689202176, 58634065908167841, 69952404620958561, 91953699475456000, 124976001535967232, 149272763796688896, 183001280170947121, 225430653627891712
Offset: 1

Views

Author

Keywords

Comments

A power m^k is called a higher power if k > 2, cf. A076467.

Examples

			a(1) = 7449150177 = 1953^3 = 1116^3 + 279^4 = 217^4 + 1736^3;
a(2) = 8936757492481 = 1729^4 = 1729^3 + 20748^3 = 15561^3 + 17290^3;
see link for more examples and more info.
		

Crossrefs

Cf. A051388, subsequence of A226777.

Programs

  • Haskell
    import qualified Data.Set as Set (split, filter)
    import Data.Set (Set, empty, size, insert, member)
    a226950 n = a226950_list !! (n-1)
    a226950_list = f a076467_list empty where
       f (x:xs) s | size s'' <= 1 = f xs (x `insert` s)
                  | otherwise     = x : f xs (x `insert` s)
                  where s'' = Set.filter ((`member` s) . (x -)) s'
                        (s', _) = Set.split (x `div` 2) s
Previous Showing 21-30 of 34 results. Next