cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A154101 Numbers n with property that A077116(n) is nonzero square.

Original entry on oeis.org

2, 5, 13, 34, 65, 130, 185, 193, 205, 260, 338, 482, 865, 901, 970, 1325, 1352, 1450, 1469, 1490, 1825, 1928, 2701, 3077, 3604, 3757, 4234, 4250, 4637, 5245, 5465, 5525, 6649, 6722, 7300, 7514, 7585, 7930, 8066, 8109, 10370, 10685, 10804, 11125, 12545
Offset: 1

Views

Author

Zak Seidov, Jan 04 2009

Keywords

Comments

A077116(a(n)) = A154101(n)^2.

Examples

			a(1) = 2 because A077116(2) = A154101(1)^2 = 4, a(3) = 13 because A077116(13) = A154101(3)^2 = 81.
		

Crossrefs

A154100 Numbers n with property that n^2 are nonzero square terms in A077116.

Original entry on oeis.org

2, 2, 9, 10, 7, 26, 37, 36, 30, 56, 26, 38, 145, 26, 170, 265, 208, 198, 130, 298, 73, 304, 135, 362, 208, 663, 730, 238, 767, 510, 704, 350, 915, 142, 584, 850, 369, 1090, 1090, 702, 730, 95, 1080, 1245, 97, 802, 1664, 738, 1090, 1971, 1904, 1276, 1295, 738, 1394
Offset: 1

Views

Author

Zak Seidov, Jan 04 2009

Keywords

Examples

			2^2=4=A077116(2), 2^2=4=A077116(5), 9^2=81=A077116(13), 10^2=100=A077116(34).
		

Crossrefs

Cf. A154101 corresponding indices of terms in A077116: 2,5,13,34,...

A179388 Values y for records of minima of positive distances d = A179386(n) = A154333(x) = x^3 - y^2.

Original entry on oeis.org

5, 11, 181, 207, 225, 500, 524, 1586, 13537, 376601, 223063347, 911054064, 16073515093, 22143115844, 29448160810, 1661699554612, 2498973838515, 26588790747913, 27582731314539, 178638660622364
Offset: 1

Views

Author

Artur Jasinski, Jul 12 2010, Jul 13 2010, Aug 03 2010

Keywords

Comments

"Records of minima" means values A179386(n)=A154333(x) such that A154333(x') > A154333(x) for all x' > x, or equivalently A181138(y) such that A181138(y') > A181138(y) for all y' > y. See the main entry A179386 for all further considerations. - M. F. Hasler, Sep 30 2013
For d values see A179386, for x values see A179387.
Theorem (Artur Jasinski):
For any positive number x >= A179387(n), the distance between the cube of x and the square of any y (with x<>n^2 and y<>n^3) can't be less than A179386(n).
Proof: Because number of integral points of each Mordell elliptic curve of the form x^3-y^2 = k is finite and completely computable there can't exist any such x (or the related y).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10100, {n, 1, max}]; vecx = Table[10100, {n, 1, max}]; vecy = Table[10100, {n, 1, max}]; len = 1; min = 10100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy (*Artur Jasinski*)

Formula

A179388(n) = sqrt(A179387(n)^3 - A179386(n)).

Extensions

Edited by M. F. Hasler, Sep 30 2013

A065733 Largest square <= n^3.

Original entry on oeis.org

0, 1, 4, 25, 64, 121, 196, 324, 484, 729, 961, 1296, 1681, 2116, 2704, 3364, 4096, 4900, 5776, 6724, 7921, 9216, 10609, 12100, 13689, 15625, 17424, 19600, 21904, 24336, 26896, 29584, 32761, 35721, 39204, 42849, 46656, 50625, 54756, 59049, 63504
Offset: 0

Views

Author

Labos Elemer, Nov 15 2001

Keywords

Examples

			a(10) = 961, as 961 = 31^2 is the largest square <= 1000 = 10^3.
		

Crossrefs

Programs

  • Haskell
    a065733 n = head [x | x <- reverse [0.. n^3], a010052 x == 1] -- Reinhard Zumkeller, Oct 10 2013
  • Mathematica
    Table[Floor[Sqrt[w^3]//N]^2, {w, 1, 50}]
  • PARI
    A065733(n)=sqrtint(n^3)^2  \\ M. F. Hasler, Oct 05 2013
    

Formula

a(n) + A077116(n) = n^3.
a(n) = A048760(n^3).
n^3 - 2*n^(3/2) <= a(n) <= n^3. - Charles R Greathouse IV, Dec 05 2022
a(n) = A000093(n)^2. - Amiram Eldar, Jul 14 2024

A075847 Difference between n^2 and the largest cube <= n^2.

Original entry on oeis.org

0, 0, 3, 1, 8, 17, 9, 22, 0, 17, 36, 57, 19, 44, 71, 9, 40, 73, 108, 18, 57, 98, 141, 17, 64, 113, 164, 0, 55, 112, 171, 232, 24, 89, 156, 225, 296, 38, 113, 190, 269, 350, 36, 121, 208, 297, 388, 12, 107, 204, 303, 404, 507, 65, 172, 281, 392, 505, 620, 106, 225, 346
Offset: 0

Views

Author

Zak Seidov and Reinhard Zumkeller, Oct 15 2002

Keywords

Comments

a(n) = n^2 - A077106(n).
a(n) = 0 iff n = m^(6*k).
a(n) = 0 when n is a cube. See A070923.

Examples

			a(4)=8 because 4^2 - 2^3 = 8; a(9)=17 because 9^2 - 4^3 = 17.
A077106(20) = 343 = 7^3 is the largest cube <= 20^2 = 400, therefore a(20) = 400 - 343 = 57.
		

Crossrefs

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Zak Seidov, Oct 30 2008

A087285 Possible differences between a cube and the next smaller square.

Original entry on oeis.org

2, 4, 7, 11, 13, 15, 19, 20, 26, 28, 35, 39, 40, 45, 47, 48, 49, 53, 55, 56, 60, 63, 67, 74, 76, 79, 81, 83, 100, 104, 107, 109, 116, 127, 135, 139, 146, 147, 148, 150, 152, 155, 170, 174, 180, 184, 186, 191, 193, 200, 207, 212, 215, 216, 233, 235, 242, 244, 249
Offset: 1

Views

Author

Hugo Pfoertner, Sep 18 2003

Keywords

Comments

Sequence and program were provided by Ralf Stephan Aug 28 2003.
Comment from David W. Wilson, Jan 05 2009: I believe there is an algorithm for solving x^3 - y^2 = k, which should have a finite number of solutions for any k. That means that we should in principle be able to compute this sequence.
Up to the initial 0 in A165288, these two sequences appear to be the same, but according to its current definition, A165288 should be the same as the (different) sequence A229618 = the range of the sequence A181138 (= least k>0 such that n^2+k is a cube): If n^2+k=y^3 is the smallest cube above n^2, then n^2 is not necessarily the largest square below y^3. E.g., 18 is in A181138 and A229618, since 9+18=27 is the least cube above 9=3^2, but 25=5^2 is the largest square below 27. - M. F. Hasler, Oct 05 2013

Examples

			a(1)=2 because the next smaller square below 3^3=27 is 5^2=25.
		

References

Crossrefs

Programs

  • PARI
    v=vector(200):for(n=2,10^7,t=n^3:s=sqrtint(t)^2: if(s==t,s=sqrtint(t-1)^2):tt=t-s: if(tt>0&&tt<=200&&!v[tt],v[tt]=n)):for(k=1,200,if(v[k],print1(k",")))

A077118 Nearest integer square to n^3.

Original entry on oeis.org

0, 1, 9, 25, 64, 121, 225, 361, 529, 729, 1024, 1296, 1764, 2209, 2704, 3364, 4096, 4900, 5776, 6889, 7921, 9216, 10609, 12100, 13924, 15625, 17689, 19600, 21904, 24336, 26896, 29929, 32761, 36100, 39204, 42849, 46656, 50625, 54756, 59536
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(5)=121, as 121=11^2 is the nearest square to 125=5^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Round[Sqrt[n^3]]^2, {n, 0, 39}] (* Alonso del Arte, Dec 07 2011, based on Artur Jasinski's program for A077119 *)
  • Python
    from math import isqrt
    def A077118(n): return ((m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1))**2 # Chai Wah Wu, Jul 29 2022

Formula

a(n) = if A077116(n) < A070929(n) then A065733(n) else A077115(n).
a(n) = A002821(n)^2. - Chai Wah Wu, Jul 30 2022

A077119 a(n) = A077118(n) - n^3.

Original entry on oeis.org

0, 0, 1, -2, 0, -4, 9, 18, 17, 0, 24, -35, 36, 12, -40, -11, 0, -13, -56, 30, -79, -45, -39, -67, 100, 0, 113, -83, -48, -53, -104, 138, -7, 163, -100, -26, 0, -28, -116, 217, 9, 248, -104, 17, 80, 79, 8, -139, 297, 0, 316, -155, 17, 119, 145, 89, -55
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n)=0 iff n = m^(6*k).
Values d=x^3-y^2 of extremal points of elliptic Mordell curves. Definition for extremal points see A200656. Each value x has only one value of distance d when coordinate x is extremal point, but for many fixed distances d, the elliptic curve has more than 1 extremal point. - Artur Jasinski, Nov 30 2011
Theorem (Artur Jasinski): If a(n)>0 then a(n)<(4n^(3/2)-1)/4 for every n. If a(n)<0 then a(n)>(-4n^(3/2)-1)/4 for every n. a(n)=0 then n is perfect square. - Artur Jasinski, Dec 08 2011

Examples

			A077118(10)=1024=32^2 is the nearest square to 10^3=1000, therefore a(10)=1024-1000=24.
		

Crossrefs

|a(n)| = A002938(n).

Programs

  • Magma
    [Round(Sqrt(n^3))^2-n^3: n in [0..60]]; // Vincenzo Librandi, Mar 24 2015
    
  • Maple
    A077119 := proc(n)
        (round( sqrt(n^3) ))^2-n^3 ;
    end proc: # R. J. Mathar, Jan 18 2021
  • Mathematica
    Table[Round[Sqrt[x^3]]^2 - x^3, {x, 0, 100}]  (* Artur Jasinski, Nov 30 2011 *)
  • Python
    from math import isqrt
    def A077119(n): return ((m:=isqrt(k:=n**3))+int((k-m*(m+1)<<2)>=1))**2-k # Chai Wah Wu, Jul 29 2022

Formula

a(n) = if A077116(n) < A070929(n) then -A077116(n) else A070929(n).

A181138 Least positive integer k such that n^2 + k is a cube.

Original entry on oeis.org

1, 7, 4, 18, 11, 2, 28, 15, 61, 44, 25, 4, 72, 47, 20, 118, 87, 54, 19, 151, 112, 71, 28, 200, 153, 104, 53, 271, 216, 159, 100, 39, 307, 242, 175, 106, 35, 359, 284, 207, 128, 47, 433, 348, 261, 172, 81, 535, 440, 343, 244, 143, 40, 566, 459, 350, 239, 126, 11
Offset: 0

Views

Author

Jason Earls, Oct 06 2010

Keywords

Comments

a(n) = A070923(n) if n is not cube. Zak Seidov, Mar 26 2013
See A229618 for the range of this sequence. A179386 gives the range of b(n) = min{ a(m); m >= n }. The indices of jumps in this sequence are given in A179388 = { n | a(m)>a(n) for all m > n } = { 0, 5, 11, 181, 207, 225, 500, 524, 1586, ... }. - M. F. Hasler, Sep 26 2013

Examples

			a(11) = 4 because 11^2 + k is never a cube for k < 4, but 11^2 + 4 = 5^3. - _Bruno Berselli_, Jan 29 2013
		

Crossrefs

Programs

  • Magma
    S:=[];
    k:=1;
    for n in [0..60] do
       while not IsPower(n^2+k,3) do
            k:=k+1;
       end while;
       Append(~S, k);
       k:=1;
    end for;
    S;  // Bruno Berselli, Jan 29 2013
    
  • Mathematica
    Table[(1 + Floor[n^(2/3)])^3 - n^2, {n, 100}] (* Zak Seidov, Mar 26 2013 *)
  • PARI
    A181138(n)=(sqrtnint(n^2,3)+1)^3-n^2 \\ Charles R Greathouse IV, Mar 26 2013

Formula

a(n) << n^(4/3). - Charles R Greathouse IV, Mar 26 2013

Extensions

Extended to a(0)=1 by M. F. Hasler, Sep 26 2013

A165288 Possible values of the difference between a cube and the largest square not larger than the cube.

Original entry on oeis.org

0, 2, 4, 7, 11, 13, 19, 20, 26, 28, 35, 39, 40, 45, 47, 48, 49, 53, 55, 56, 60, 63, 67, 74, 76, 79, 81, 83, 100, 104, 107, 109, 116, 135, 139, 146, 147, 148, 150, 152, 155, 170, 174, 180, 184, 186, 191, 193, 200, 207, 212, 215, 216, 233, 235, 242, 244, 251, 270, 277
Offset: 1

Views

Author

Keywords

Comments

The values of A077116, sorted and duplicates removed.
Note that the values have been generated with a finite search radius and are not proved to be complete. [R. J. Mathar, Oct 09 2009]
Except for the leading 0, a subsequence of A229618 which is in turn (except for the initial 1) a subsequence of A106265. The values {15, 18, 25, 44, 54, 61, 71, 72, 87, 106, 112, 118, 126, 127,...} are in A229618 but not in the present sequence. Using results from A179386, it should be possible to prove that the sequence is complete up to a given point. - M. F. Hasler, Sep 26 2013

Examples

			The gap 0 appears in 1^3-1^2 or 4^3-8^2 etc.
The gap 2 appears for example in 3^3-5^2.
The gap 4 appears for example in 2^3-2^2 or 5^3-11^2.
The gap 19 appears in 7^3-18^2, the gap 20 in 6^3-14^2.
		

Crossrefs

Essentially the same as A087285.

Programs

  • Mathematica
    lst={};Do[a=n^3-Floor[Sqrt[n^3]]^2;If[a<=508,AppendTo[lst,a]],{n,2*8!}]; Take[Union@lst,90]

Extensions

Edited by R. J. Mathar, Oct 09 2009
Name corrected by M. F. Hasler, Oct 05 2013
Showing 1-10 of 22 results. Next