A195148
Concentric 20-gonal numbers.
Original entry on oeis.org
0, 1, 20, 41, 80, 121, 180, 241, 320, 401, 500, 601, 720, 841, 980, 1121, 1280, 1441, 1620, 1801, 2000, 2201, 2420, 2641, 2880, 3121, 3380, 3641, 3920, 4201, 4500, 4801, 5120, 5441, 5780, 6121, 6480, 6841, 7220, 7601, 8000, 8401, 8820, 9241, 9680, 10121
Offset: 0
-
[5*n^2+2*(-1)^n-2: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
-
LinearRecurrence[{2,0,-2,1},{0,1,20,41},50] (* Harvey P. Dale, Apr 08 2016 *)
-
a(n)=5*n^2+2*(-1)^n-2 \\ Charles R Greathouse IV, Sep 28 2015
A194274
Concentric square numbers (see Comments lines for definition).
Original entry on oeis.org
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, 72, 84, 97, 112, 128, 144, 161, 180, 200, 220, 241, 264, 288, 312, 337, 364, 392, 420, 449, 480, 512, 544, 577, 612, 648, 684, 721, 760, 800, 840, 881, 924, 968, 1012, 1057, 1104, 1152, 1200, 1249, 1300, 1352, 1404
Offset: 0
Using the numbers A008574 we can write:
0, 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
0, 0, 0, 0, 0, 1, 4, 8, 12, 16, 20, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, ...
...
Illustration of initial terms:
. o o o o o o
. o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
.
. 1 4 8 12 17 24
-
[n le 2 select n-1 else (n-1)^2 - Self(n-2): n in [1..61]]; // G. C. Greubel, Jan 31 2024
-
Table[Floor[3*n/4] + Floor[(n*(n + 2) + 1)/2] - Floor[(3*n + 1)/4], {n, 0, 52}] (* Arkadiusz Wesolowski, Nov 08 2011 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n^2-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,4,8,12},60] (* Harvey P. Dale, Sep 11 2013 *)
-
prpr = 0
prev = 1
for n in range(2,777):
print(str(prpr), end=", ")
curr = n*n - prpr
prpr = prev
prev = curr
# Alex Ratushnyak, Aug 03 2012
-
def A194274(n): return (3*n>>2)+(n*(n+2)+1>>1)-(3*n+1>>2) # Chai Wah Wu, Jul 15 2023
-
def A194274(n): return n if n<2 else n^2 - A194274(n-2)
[A194274(n) for n in range(41)] # G. C. Greubel, Jan 31 2024
A195042
Concentric 9-gonal numbers.
Original entry on oeis.org
0, 1, 9, 19, 36, 55, 81, 109, 144, 181, 225, 271, 324, 379, 441, 505, 576, 649, 729, 811, 900, 991, 1089, 1189, 1296, 1405, 1521, 1639, 1764, 1891, 2025, 2161, 2304, 2449, 2601, 2755, 2916, 3079, 3249, 3421, 3600, 3781, 3969, 4159, 4356, 4555, 4761, 4969, 5184, 5401, 5625
Offset: 0
-
a195042 n = a195042_list !! n
a195042_list = scanl (+) 0 a056020_list
-- Reinhard Zumkeller, Jan 07 2012
-
[(9*n^2+5/2*((-1)^n-1))/4: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
-
LinearRecurrence[{2,0,-2,1},{0,1,9,19},60] (* Harvey P. Dale, Nov 24 2019 *)
-
a(n)=(9*n^2+5/2*((-1)^n-1))/4 \\ Charles R Greathouse IV, Oct 07 2015
Original entry on oeis.org
0, 2, 10, 20, 36, 54, 78, 104, 136, 170, 210, 252, 300, 350, 406, 464, 528, 594, 666, 740, 820, 902, 990, 1080, 1176, 1274, 1378, 1484, 1596, 1710, 1830, 1952, 2080, 2210, 2346, 2484, 2628, 2774, 2926, 3080, 3240, 3402, 3570, 3740
Offset: 0
Array begins:
0, 2
10, 20
36, 54
78, 104
Cf.
A000217,
A033585,
A046092,
A139271,
A077221,
A139591,
A139593,
A139595,
A139596,
A139597,
A139598.
Original entry on oeis.org
0, 3, 11, 22, 38, 57, 81, 108, 140, 175, 215, 258, 306, 357, 413, 472, 536, 603, 675, 750, 830, 913, 1001, 1092, 1188, 1287, 1391, 1498, 1610, 1725, 1845, 1968, 2096, 2227, 2363, 2502, 2646, 2793, 2945, 3100, 3260, 3423, 3591, 3762
Offset: 0
Array begins:
0, 3;
11, 22;
38, 57;
81, 108;
Cf.
A000217,
A046092,
A139272,
A139276,
A077221,
A139591,
A139592,
A139594,
A139595,
A139596,
A139597,
A139598,
A047470.
-
LinearRecurrence[{2,0,-2,1},{0,3,11,22},50] (* Harvey P. Dale, Feb 09 2019 *)
A195041
Concentric heptagonal numbers.
Original entry on oeis.org
0, 1, 7, 15, 28, 43, 63, 85, 112, 141, 175, 211, 252, 295, 343, 393, 448, 505, 567, 631, 700, 771, 847, 925, 1008, 1093, 1183, 1275, 1372, 1471, 1575, 1681, 1792, 1905, 2023, 2143, 2268, 2395, 2527, 2661, 2800, 2941, 3087, 3235, 3388, 3543
Offset: 0
-
a195041 n = a195041_list !! n
a195041_list = scanl (+) 0 a047336_list
-- Reinhard Zumkeller, Jan 07 2012
-
[7*n^2/4+3*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
-
CoefficientList[Series[-((x (1+5 x+x^2))/((-1+x)^3 (1+x))),{x,0,80}],x] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,7,15},80] (* Harvey P. Dale, Jan 18 2021 *)
-
a(n)=7*n^2\4 \\ Charles R Greathouse IV, Oct 07 2015
A139596
A033587(n) followed by even hexagonal number A014635(n+1).
Original entry on oeis.org
0, 6, 14, 28, 44, 66, 90, 120, 152, 190, 230, 276, 324, 378, 434, 496, 560, 630, 702, 780, 860, 946, 1034, 1128, 1224, 1326, 1430, 1540, 1652, 1770, 1890, 2016, 2144, 2278, 2414, 2556, 2700, 2850, 3002, 3160, 3320, 3486, 3654, 3828
Offset: 0
Array begins:
0, 6
14, 28
44, 66
90, 120
Cf.
A000217,
A014635,
A033587,
A046092,
A077221,
A139591,
A139592,
A139593,
A139595,
A139597,
A139598.
-
LinearRecurrence[{2,0,-2,1},{0,6,14,28},50] (* Harvey P. Dale, Jan 20 2024 *)
Original entry on oeis.org
0, 8, 16, 32, 48, 72, 96, 128, 160, 200, 240, 288, 336, 392, 448, 512, 576, 648, 720, 800, 880, 968, 1056, 1152, 1248, 1352, 1456, 1568, 1680, 1800, 1920, 2048, 2176, 2312, 2448, 2592, 2736, 2888, 3040, 3200, 3360, 3528, 3696, 3872
Offset: 0
Array begins:
0, 8;
16, 32;
48, 72;
96, 128;
Cf.
A000217,
A035008,
A046092,
A139098,
A077221,
A139591,
A139592,
A139593,
A139595,
A139596,
A139597.
-
LinearRecurrence[{2,0,-2,1},{0,8,16,32},50] (* Harvey P. Dale, Sep 27 2019 *)
Original entry on oeis.org
0, 1, 9, 18, 34, 51, 75, 100, 132, 165, 205, 246, 294, 343, 399, 456, 520, 585, 657, 730, 810, 891, 979, 1068, 1164, 1261, 1365, 1470, 1582, 1695, 1815, 1936, 2064, 2193, 2329, 2466, 2610, 2755, 2907, 3060, 3220, 3381, 3549, 3718, 3894, 4071, 4255, 4440, 4632
Offset: 0
Array begins:
0, 1;
9, 18;
34, 51;
75, 100;
...
Cf.
A000217,
A046092,
A051870,
A139275,
A077221,
A139592,
A139593,
A139595,
A139596,
A139597,
A139598.
A195605
a(n) = (4*n*(n+2)+(-1)^n+1)/2 + 1.
Original entry on oeis.org
2, 7, 18, 31, 50, 71, 98, 127, 162, 199, 242, 287, 338, 391, 450, 511, 578, 647, 722, 799, 882, 967, 1058, 1151, 1250, 1351, 1458, 1567, 1682, 1799, 1922, 2047, 2178, 2311, 2450, 2591, 2738, 2887, 3042, 3199, 3362, 3527, 3698, 3871, 4050, 4231, 4418, 4607, 4802
Offset: 0
Cf.
A047621 (contains first differences),
A016754 (contains the sum of any two consecutive terms).
Cf.
A033585,
A069129,
A077221,
A102083,
A139098,
A139271-
A139277,
A139592,
A139593,
A188135,
A194268,
A194431,
A195241 [incomplete list].
-
[(4*n*(n+2)+(-1)^n+3)/2: n in [0..48]];
-
CoefficientList[Series[(2 + 3 x + 4 x^2 - x^3) / ((1 + x) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{2,0,-2,1},{2,7,18,31},50] (* Harvey P. Dale, Jan 21 2017 *)
-
for(n=0, 48, print1((4*n*(n+2)+(-1)^n+3)/2", "));
Comments