cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A265836 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*x^k).

Original entry on oeis.org

1, 2, 10, 32, 120, 342, 1206, 3320, 10604, 29578, 88342, 239400, 702020, 1863654, 5262650, 13948824, 38427192, 100244162, 272822282, 703972024, 1883948848, 4839944150, 12779850278, 32548367784, 85335644100, 215826029018, 560407835934, 1412632075328
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          2^n, b(n, i-1)+(1+i)*i*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 16 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - k*(k+1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 6^(n/2), where
c = 79.0418032646837469192452349...... if n is even,
c = 78.4480460169710091436913691...... if n is odd.

A292165 Expansion of Product_{k>=1} 1/(1 + k^2*x^k).

Original entry on oeis.org

1, -1, -3, -6, 6, 5, 40, 11, 226, -516, -186, -844, 3731, -3734, 814, -33819, 85660, -46022, 210342, -411678, 593996, -2980156, 2076721, -3445584, 40785410, -37503158, 98085, -271846888, 336918770, -295108832, 2178341296, -2404059340, 6127604258
Offset: 0

Views

Author

Seiichi Manyama, Sep 10 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m->
          `if`(mn, 0, i^2*b(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(b(n-i$2)*a(i$2), i=0..n-1))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2017
  • Mathematica
    b[n_, i_] := b[n, i] = Function[m,
         If[m < n, 0, If[n == m, i!^2, b[n, i - 1] +
         If[i > n, 0, i^2*b[n - i, i - 1]]]]][i*(i + 1)/2];
    a[n_] := a[n] = If[n == 0, 1, -Sum[b[n - i, n - i]*a[i], {i, 0, n - 1}]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 21 2022, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(n=1, N, 1+n^2*x^n))

Formula

Convolution inverse of A092484.
From Vaclav Kotesovec, Sep 10 2017: (Start)
a(n) ~ (-1)^n * c * 3^(2*n/3), where
c = 0.717271758899891528435966115495396784611147877234945... if mod(n,3)=0
c = 0.387695187106751505296020614217498222070185848125472... if mod(n,3)=1
c = 0.241939482775588594057384356004734639024152664456553... if mod(n,3)=2
(End)
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^k*j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018

A292417 a(n) = [x^n] Product_{k>=1} 1/(1 - n^2*x^k).

Original entry on oeis.org

1, 1, 20, 819, 70160, 10188775, 2240751636, 692647082799, 286013768613952, 151994274055319070, 101020305070908050100, 82086758986568812837856, 80056656965795630400382608, 92282612223268812357487227077, 124113156850218393012451734737460
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, 1/(1-n^2*x^k +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ n^(2*n) * (1 + 1/n^2 + 2/n^4 + 3/n^6 + 5/n^8 + 7/n^10), for coefficients see A000041.

A294586 Expansion of Product_{k>=1} 1/(1 - k^2*x^k)^(k^2).

Original entry on oeis.org

1, 1, 17, 98, 514, 2435, 12752, 58849, 277362, 1243056, 5523734, 23889860, 102176581, 427458488, 1768064752, 7197695011, 28955246228, 114977761216, 451686925462, 1754581791860, 6749143188662, 25707194720502, 97041994691555, 363121143230292
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2017

Keywords

Crossrefs

Column k=2 of A294585.

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - k^2*x^k)^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 11 2017 *)
    nmax = 30; s = 1 - x; Do[s *= Sum[Binomial[k^2, j]*(-1)^j*k^(2*j)*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k^2*x^k)^k^2))

Formula

From Vaclav Kotesovec, Nov 14 2017: (Start)
a(n) ~ c * 3^(2*n/3) * n^8, where
if mod(n,3)=0 then c = 350793443467906700358779160929996923840677857044\
13786172.61998576944425459411592809123023259309183199454386580509531344\
26216683391121761062030679551011342614958936988089343473390138...
if mod(n,3)=1 then c = 350793443467906700358779160929996923840677857044\
13786172.61998576943431618172412821798685989333734080090574886961583670\
65437558779530384541992249698997443314123905740649930258416583...
if mod(n,3)=2 then c = 350793443467906700358779160929996923840677857044\
13786172.61998576943586440772541471067224229278174424709431922476448338\
37991534958575385658058309282842532811502400165735702386411333...
In closed form, a(n) ~ ((Product_{k>=4} ((1 - k^2 / 3^(2*k/3))^(-k^2))) / ((1 - 1/3^(2/3)) * (1 - 4/3^(4/3))^4) + (Product_{k>=4} ((1 - (-1)^(2*k/3) * k^2 / 3^(2*k/3))^(-k^2))) / ((-1)^(2*n/3) * (1 + 4/3 * (-1/3)^(1/3))^4 * (1 - (-1/3)^(2/3))) + (Product_{k>=4} ((1 - (-(-1)^(1/3))^k * k^2 / 3^(2*k/3))^(-k^2))) / ((-(-1)^(1/3))^n * (1 + (-1)^(1/3) / 3^(2/3)) * (1 - 4*(-1)^(2/3) / 3^(4/3))^4)) * 3^(2*n/3) * n^8 / 793618560. - Vaclav Kotesovec, Nov 14 2017 (End)

A266137 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k-1))).

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 14, 20, 33, 50, 68, 106, 147, 214, 325, 445, 624, 916, 1259, 1780, 2553, 3477, 4821, 6794, 9340, 12777, 17808, 24266, 32998, 45764, 61770, 83593, 114594, 154039, 208617, 283232, 379040, 509270, 687448, 919709, 1228319, 1650595, 2195745
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-k*(x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 2^(n/3), where
c = 2684.3207660224428945778151546260301591494083790... if mod(n,3) = 0
c = 2683.9203893332021512699407898064547843826991184... if mod(n,3) = 1
c = 2683.7635451650373491773203224442103370428384569... if mod(n,3) = 2.

A266138 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k+1))).

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 7, 7, 11, 13, 24, 26, 35, 44, 69, 78, 112, 150, 188, 245, 318, 429, 537, 729, 924, 1177, 1534, 1965, 2518, 3287, 4108, 5394, 6857, 8604, 11022, 14073, 17899, 22549, 28900, 36182, 45954, 58395, 72912, 92118, 116201, 146279
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[1/(1-k*(x^(2*k+1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/7), where
c = 617630.638335... if mod(n,7) = 0
c = 617630.321433... if mod(n,7) = 1
c = 617630.360795... if mod(n,7) = 2
c = 617630.429073... if mod(n,7) = 3
c = 617630.357078... if mod(n,7) = 4
c = 617630.421636... if mod(n,7) = 5
c = 617630.341606... if mod(n,7) = 6.

A305204 Expansion of Product_{k>=1} 1/(1 - (k*(k + 1)/2)*x^k).

Original entry on oeis.org

1, 1, 4, 10, 29, 62, 176, 363, 931, 2029, 4751, 10062, 23749, 48959, 109342, 230981, 500344, 1031667, 2223218, 4531585, 9570395, 19523510, 40411313, 81628389, 168484616, 336850254, 685112670, 1369559157, 2757908932, 5464925114, 10958578421, 21574592680
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          1, b(n, i-1)+(1+i)*i/2*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 16 2019
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[1/(1 - (k (k + 1)/2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[Exp[Sum[Sum[(j (j + 1))^k x^(j k)/(k 2^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(k/d + 1) ((d + 1)/2)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} 1/(1 - A000217(k)*x^k).
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j*(j + 1))^k*x^(j*k)/(k*2^k)).

A356560 Expansion of e.g.f. Product_{k>0} 1/(1 - k^2 * x^k)^(1/k^2).

Original entry on oeis.org

1, 1, 4, 18, 156, 1020, 16560, 143640, 2898000, 43016400, 926856000, 13749674400, 524416939200, 8626888670400, 284030505158400, 7950850859952000, 284397434953632000, 6752059834744224000, 357295791069689472000, 9098085523917918528000
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k^2*x^k)^(1/k^2))))
    
  • PARI
    a308688(n) = sumdiv(n, d, d^(2*n/d-1));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a308688(j)*v[i-j+1]/(i-j)!)); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A308688(k) * a(n-k)/(n-k)!.

A369887 Sum of products of squares of parts , counted without multiplicity, in all partitions of n.

Original entry on oeis.org

1, 1, 5, 14, 34, 95, 208, 537, 1090, 2812, 5566, 12480, 26199, 53486, 112866, 229111, 450800, 885030, 1778190, 3319846, 6624376, 12354288, 23674929, 43485580, 81441398, 149864634, 273431081, 503205344, 906757150, 1630802024, 2920280596, 5166820832
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2024

Keywords

Examples

			The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. So a(4) = 16 + 9 + 4 + 4 + 1 = 34.
		

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, 1+k^2*x^k/(1-x^k)))

Formula

G.f.: Product_{k>=1} 1 + k^2*x^k/(1-x^k).
Previous Showing 11-19 of 19 results.