A256620 Numbers n such that n is both the average of some twin prime pair p, q (q = p+2) (i.e., n = p+1 = q-1) and is also the arithmetic mean of the four numbers consisting of the two primes before p and the two primes after q.
12, 30, 42, 312, 600, 858, 1032, 1290, 1698, 2112, 2688, 3768, 4218, 4230, 4260, 5850, 6132, 6552, 6702, 7212, 7308, 8292, 9420, 9930, 11970, 12042, 12378, 15972, 17190, 17598, 17922, 19470, 19890, 21600, 24180, 26862, 30012, 30852, 32118
Offset: 1
Keywords
Examples
For n=12: 5,7,11,13,17,19 are six consecutive primes with 13 = 11 + 2 and (5+7+17+19)/4=12. For n=1032: 1019,1021,1031,1033,1039,1049 are six consecutive primes with 1033 = 1031 + 2 and (1019+1021+1039+1049)/4=1032.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..500000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
avQ[lst_]:=Module[{td=TakeDrop[lst,{3,4}]},Mean[td[[1]]]==Mean[td[[2]]] && td[[1,2]]-td[[1,1]]==2]; Mean[Take[#,{3,4}]]&/@Select[Partition[ Prime[ Range[ 3500]],6,1],avQ] (* The program uses the TakeDrop function from Mathematica version 10.2 *) (* Harvey P. Dale, Jul 16 2015 *)
-
Python
from sympy import isprime,prevprime,nextprime for i in range(5,200001,2): if isprime(i) and isprime(i+2): a = prevprime(i) b = prevprime(a) if a+b+nextprime(i,2)+nextprime(i,3) == 4*(i+1): print(i+1,end=', ') else: continue
Extensions
Typo in Name fixed by Zak Seidov, Apr 25 2015
Comments