cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A171621 Numerator of 1/4 - 1/n^2, each fourth term multiplied by 4.

Original entry on oeis.org

0, 5, 3, 21, 8, 45, 15, 77, 24, 117, 35, 165, 48, 221, 63, 285, 80, 357, 99, 437, 120, 525, 143, 621, 168, 725, 195, 837, 224, 957, 255, 1085, 288, 1221, 323, 1365, 360, 1517, 399, 1677, 440, 1845, 483, 2021, 528
Offset: 2

Views

Author

Paul Curtz, Dec 13 2009

Keywords

Comments

These are the square roots of the fifth column of the array of denominators mentioned in A171522.

Crossrefs

Programs

  • Magma
    [-(-5+3*(-1)^n)*(-4+n^2)/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
  • Maple
    A061037 := proc(n) 1/4-1/n^2 ; numer(%) ; end proc:
    A171621 := proc(n) if n mod 4 = 2 then 4*A061037(n) ; else A061037(n) ; end if; end proc:
    seq(A171621(n),n=2..90) ; # R. J. Mathar, Apr 02 2011
  • Mathematica
    Table[-(-5+3*(-1)^n)*(-4+n^2)/8, {n,0,100}] (* G. C. Greubel, Sep 19 2018 *)
    LinearRecurrence[{0,3,0,-3,0,1},{0,5,3,21,8,45},50] (* Harvey P. Dale, Nov 01 2019 *)
  • PARI
    concat(0, Vec(x^3*(-5-3*x-6*x^2+x^3+3*x^4)/((x-1)^3*(1+x)^3) + O(x^100))) \\ Colin Barker, Nov 03 2014
    

Formula

a(n) = A061037(n) * A010121(n+2).
a(2n+2) = A005563(n). a(2n+3) = A078371(n).
G.f.: x^3*(-5-3*x-6*x^2+x^3+3*x^4) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 02 2011
a(n) = -(-5+3*(-1)^n)*(-4+n^2)/8. - Colin Barker, Nov 03 2014
Sum_{n>=3} 1/a(n) = 13/12. - Amiram Eldar, Aug 11 2022

A003185 a(n) = (4*n+1)*(4*n+5).

Original entry on oeis.org

5, 45, 117, 221, 357, 525, 725, 957, 1221, 1517, 1845, 2205, 2597, 3021, 3477, 3965, 4485, 5037, 5621, 6237, 6885, 7565, 8277, 9021, 9797, 10605, 11445, 12317, 13221, 14157, 15125, 16125, 17157, 18221
Offset: 0

Views

Author

Keywords

Comments

Bisection of A078371. - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 19 2004
a(n) is the smallest number not in the sequence such that Sum_{k=0..n} 1/a(k) has a denominator 4*n+5. - Derek Orr, Jun 21 2015
a(n) is the number of 2 X 2 matrices with all elements in {-n,..,0,..,n} with permanent = determinant^n except for a(0), where a(0)=0, but A003185(0) = 5. - Indranil Ghosh, Jan 04 2017

Crossrefs

Programs

  • Mathematica
    Table[(4n+1)(4n+5),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{5,45,117},40] (* Harvey P. Dale, Jan 27 2013 *)
  • PARI
    a(n) = (4*n+1)*(4*n+5); \\ Michel Marcus, Jan 17 2023
    
  • Python
    a= lambda n: (4*n+1)*(4*n+5) # Indranil Ghosh, Jan 04 2017

Formula

1 = Sum_{n>=0} 4/a(n). Sum_{k=0..n} 4/a(k) = 4(n+1)/[4(n+1)+1]. Integral_{x=0..1} 1/(1 + x^4) = Sum_{n>=0} 4/a(2*n) = Sum_{n>=0} (-1)^n/(4n+1). - Gary W. Adamson, Jun 18 2003
1 = 1/5 + Sum_{n>=1} 16/a(n); with partial sums (4n+1)/(4n+5). - Gary W. Adamson, Jun 18 2003
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: (-5-30*x+3*x^2)/(-1+x)^3.
a(3*n) = A001513(2*n).
Conjecture: a(n+1)-a(n) = A063164(n+2). (End)
a(n) = 32*n + a(n-1) + 8 (with a(0)=5). - Vincenzo Librandi, Nov 12 2010
a(0)=5, a(1)=45, a(2)=117, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 27 2013
Sum_{n>=0} (-1)^n/a(n) = (log(2*sqrt(2)+3) + Pi)/(8*sqrt(2)) - 1/4. - Amiram Eldar, Oct 08 2023

A142717 First (leftmost) odd term in the n-th row of triangle A120070.

Original entry on oeis.org

3, 5, 15, 21, 35, 45, 63, 77, 99, 117, 143, 165, 195, 221, 255, 285, 323, 357, 399, 437, 483, 525, 575, 621, 675, 725, 783, 837, 899, 957, 1023, 1085, 1155, 1221, 1295, 1365, 1443, 1517, 1599, 1677, 1763, 1845, 1935, 2021, 2115, 2205, 2303, 2397, 2499, 2597
Offset: 1

Views

Author

Paul Curtz, Sep 26 2008

Keywords

Comments

Also: Records sequence of A100181.
The last (rightmost) term in the n-th row of triangle A120070 is A005408(n).

Examples

			The odd terms of A120070 build the irregular triangle
  3;
  5;
  15,7;
  21,9;
  35,27,11;
  45,33,13;
  63,55,39,15;
The leftmost column defines this sequence.
		

Crossrefs

Programs

  • Mathematica
    A142717[n_]:=(n+1)^2-If[OddQ[n],1,4];Array[A142717,100] (* or *)
    LinearRecurrence[{2,0,-2,1},{3,5,15,21},100] (* Paolo Xausa, Dec 05 2023 *)

Formula

First differences: a(n+1)-a(n) = A142954(n).
From R. J. Mathar, Oct 24 2008: (Start)
a(n) = (n+1)^2-1 = A000466((n+1)/2) if n odd.
a(n) = (n+1)^2-4 = A078371(n/2-1) if n even.
a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
G.f.: x(3-x+5x^2-3x^3)/((1+x)(1-x)^3). (End)

Extensions

Edited and extended by R. J. Mathar, Oct 24 2008

A085027 a(n) = (4*n+3)*(4*n+7).

Original entry on oeis.org

21, 77, 165, 285, 437, 621, 837, 1085, 1365, 1677, 2021, 2397, 2805, 3245, 3717, 4221, 4757, 5325, 5925, 6557, 7221, 7917, 8645, 9405, 10197, 11021, 11877, 12765, 13685, 14637, 15621, 16637, 17685, 18765, 19877, 21021, 22197, 23405, 24645, 25917, 27221, 28557, 29925, 31325, 32757, 34221
Offset: 0

Views

Author

Gary W. Adamson, Jun 19 2003

Keywords

Comments

1 = 3/7 + Sum_{n>=1} 16/a(n) = 3/7 + 16/77 + 16/165 + 16/285...+...; with partial sums: 3/7, 7/11, 11/15, 15/19, 19/23, ...(4n+3)/(4n+7), ... ==> 1.
With A003185(n) = (4*n+1)*(4*n+5), a bisection of A078371(n) which is a bisection of A061037(n+2).
A quadrisection of A061037(n+2). After A002378(n), A003185(n) and A000466(n+1). - Paul Curtz, Mar 30 2011

Examples

			21 = (3)(7), 77 = (7)(11), 165 = (11)(15), 285 = (15)(19), 437 = (19)(23)...
		

Crossrefs

Programs

Formula

a(n) = 16*n^2+40*n+21. - Vincenzo Librandi, Aug 13 2011
From Colin Barker, Jul 11 2012: (Start)
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: (21+14*x-3*x^2)/(1-x)^3. (End)
E.g.f.: (21 +56*x +16*x^2)*exp(x). - G. C. Greubel, Sep 20 2018
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/12.
Sum_{n>=0} (-1)^n/a(n) = Pi/(8*sqrt(2)) + log(sqrt(2)-1)/(4*sqrt(2)) - 1/12. (End)

A247829 a(3*k) = k*(k+1), a(3*k+1) = (2*k-1)*(2*k+1), a(3*k+2) = (2*k-1)*(2*k+3).

Original entry on oeis.org

0, -1, -3, 2, 3, 5, 6, 15, 21, 12, 35, 45, 20, 63, 77, 30, 99, 117, 42, 143, 165, 56, 195, 221, 72, 255, 285, 90, 323, 357, 110, 399, 437, 132, 483, 525, 156, 575, 621, 182, 675, 725, 210, 783, 837, 240, 899, 957, 272, 1023, 1085, 306, 1155, 1221, 342, 1295
Offset: 0

Views

Author

Paul Curtz, Dec 01 2014

Keywords

Comments

A permutation of A061037(n) = -1, -3, 0, 5, 3, 21, 2, 45, 15, 77, 6, ... and of A214297(n) = -1, 0, -3, 2, 3, 6, 5, 12, ... .
Among consequences: b(n) = 4*a(n) + (sequence of period 3:repeat 1, 4, 16) = 1, 0, 4, 9, 16, 36, 25, 64, 100, ... , is a permutation of the squares of the nonnegative integers A000290(n).
And a(n)/b(n) = 0/1, -1/0, -3/4, 2/9, 3/16, 5/36, ... is a permutation of the Balmer series A061037(n)/A061038(n) = -1/0, -3/4, 0/1, 5/36, 3/16, ... .
a(5n) is divisible by 5.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3*x^7-3*x^6-14*x^4-6*x^3-2*x^2+3*x+1)/((x-1)^3*(x^2 +x+1)^3))); // G. C. Greubel, Sep 20 2018
  • Maple
    seq(op([k*(k+1),(2*k-1)*(2*k+1),(2*k-1)*(2*k+3)]), k=0..100); # Robert Israel, Dec 01 2014
  • Mathematica
    Table[Sequence @@ {n*(n+1), (2*n-1)*(2*n+1), (2*n-1)*(2*n+3)}, {n, 0, 18}] (* Jean-François Alcover, Dec 16 2014 *)
  • PARI
    concat(0, Vec(x*(3*x^7-3*x^6-14*x^4-6*x^3-2*x^2+3*x+1)/((x-1)^3*(x^2+x+1)^3) + O(x^100))) \\ Colin Barker, Dec 02 2014
    

Formula

a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9).
a(3*k) + a(3*k+1) + a(3*k+2) = 9*k^2 + 5*k - 4.
G.f.: x*(3*x^7 - 3*x^6 - 14*x^4 - 6*x^3 - 2*x^2 + 3*x + 1)/((x-1)^3*(x^2 +x+1)^3). - Robert Israel, Dec 01 2014
a(n) = -(n^2 + n + floor(n/3)*(27*floor(n/3)^3 - 18*(n+1)*floor(n/3)^2 + (3*n^2 + 21*n - 14)*floor(n/3) - (5*n^2 - n + 5)))/2. - Luce ETIENNE, Mar 13 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/2.
Sum_{n>=1} (-1)^n/a(n) = Pi/4 + 1 - 2*log(2). (End)

A265056 Partial sums of A234275.

Original entry on oeis.org

1, 5, 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, 725, 837, 957, 1085, 1221, 1365, 1517, 1677, 1845, 2021, 2205, 2397, 2597, 2805, 3021, 3245, 3477, 3717, 3965, 4221, 4485, 4757, 5037, 5325, 5621, 5925, 6237, 6557, 6885, 7221, 7565, 7917, 8277, 8645, 9021, 9405, 9797, 10197, 10605, 11021
Offset: 0

Views

Author

N. J. A. Sloane, Dec 28 2015

Keywords

Comments

The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood, initiated with a single black (ON) cell. - Robert Price, May 28 2016
For n > 0, a(n) is the number of unit squares visible when two (2n-1) X (2n+1) grids are placed perpendicular to each other with their centers aligned. - Kiran Ananthpur Bacche, Sep 04 2025

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A234275.
Apart from initial term, same as A078371.

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{2,-1},{1,4,16,24},60]] (* or *) LinearRecurrence[{3,-3,1},{1,5,21,45},60] (* Harvey P. Dale, Sep 22 2024 *)
  • PARI
    Vec((1+2*x+9*x^2-4*x^3)/(1-x)^3 + O(x^100)) \\ Colin Barker, Jan 01 2016

Formula

From Colin Barker, Jan 01 2016: (Start)
a(n) = 4*n^2+4*n-3 for n>0.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: (1+2*x+9*x^2-4*x^3) / (1-x)^3.
(End)

A226379 a(5n) = 2*n*(2*n+1), a(5n+1) = (2*n-3)*(2*n+5), a(5n+2) = (2*n-1)*(2*n+3), a(5n+3) = (2*n+2)*(2*n+1), a(5n+4) = (2*n+1)*(2*n+3).

Original entry on oeis.org

0, -15, -3, 2, 3, 6, -7, 5, 12, 15, 20, 9, 21, 30, 35, 42, 33, 45, 56, 63, 72, 65, 77, 90, 99, 110, 105, 117, 132, 143, 156, 153, 165, 182, 195, 210, 209, 221, 240, 255, 272, 273, 285, 306, 323, 342, 345, 357, 380, 399, 420, 425, 437
Offset: 0

Views

Author

Paul Curtz, Jun 05 2013

Keywords

Comments

The sequence is the fifth row of the following array:
0, 6, 20, 42, 72, 110, 156, 210, 272, ... A002943
0, 3, 6, 15, 20, 35, 42, 63, 72, ... bisections A002943, A000466
0, 2, 3, 6, 12, 15, 20, 30, 35, ... A226023 (trisections A002943, A000466, A002439)
0, -3, 2, 3, 6, 5, 12, 15, 20, ... A214297 (quadrisections A078371)
0, -15, -3, 2, 3, 6, -7, 5, 12, ... a(n)
0, -63, -15, -3, 2, 3, 6, -55, -7, ...
The principle of construction is that (i) the lower left triangular portion has constant values down the diagonals (6, 3, 2, -3, -15, ...), defined from row 4 on by the negated values of A024036. (ii) The extension along the rows is defined by maintaining bisections, trisections, quadrisections etc of the form (2*n+x)*(2*n+y) with some constants x and y. In the fifth line this needs the quintisections shown in the NAME.
Each row in the array has the subsequences of the previous row plus another subsequence of the format (2*n+1)*(2*n+y) shuffled in; the first A002943, the second also A000466, the third also A002439, the fourth also A078371, and the fifth (2*n+3)*(2*n-5).
Only the first three rows are monotonically increasing everywhere.
a(n) is divisible by A226203(n).
Numerators of: 0, -15/4, -3/4, 2/9, 3/16, 6/25, -7/36, 5/36, 12/49, 15/64, 20/81, ... = a(n)/A226096(n). A permutation of A225948(n+1)/A226008(n+1).
Is the sequence increasing monotonically from 221 on?

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( -x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9)/((1-x^5)^2*(1-x)) )); // G. C. Greubel, Mar 23 2024
    
  • Mathematica
    CoefficientList[Series[x*(15 - 12*x - 5*x^2 - x^3 - 3*x^4 - 17*x^5 + 12*x^6 + 3*x^7 - x^8 + x^9)/((x^4 + x^3 + x^2 + x + 1)^2*(x - 1)^3), {x, 0, 80}], x] (* Wesley Ivan Hurt, Oct 03 2017 *)
  • SageMath
    def A226379_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9)/((1-x^5)^2*(1-x)) ).list()
    A226379_list(50) # G. C. Greubel, Mar 23 2024

Formula

4*a(n) = A226096(n) - period 5: repeat [1, 64, 16, 1, 4].
G.f.: x*(15-12*x-5*x^2-x^3-3*x^4-17*x^5+12*x^6+3*x^7-x^8+x^9) / ( (x^4+x^3+x^2+x+1)^2 *(x-1)^3 ). - R. J. Mathar, Jun 13 2013
a(n) = a(n-1)+2*a(n-5)-2*a(n-6)-a(n-10)+a(n-11) for n > 10. - Wesley Ivan Hurt, Oct 03 2017

A273408 Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 675", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 6, 27, 72, 149, 266, 431, 652, 937, 1294, 1731, 2256, 2877, 3602, 4439, 5396, 6481, 7702, 9067, 10584, 12261, 14106, 16127, 18332, 20729, 23326, 26131, 29152, 32397, 35874, 39591, 43556, 47777, 52262, 57019, 62056, 67381, 73002, 78927, 85164, 91721, 98606
Offset: 0

Views

Author

Robert Price, May 21 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A078371.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=675; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)

Formula

Conjectures from Colin Barker, May 22 2016: (Start)
a(n) = (4*n^3+12*n^2-n+3)/3.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
G.f.: (1+2*x+9*x^2-4*x^3) / (1-x)^4. (End)

A069079 a(n) = (2*n+1)*(2*n+2)*(2*n+4)*(2*n+5).

Original entry on oeis.org

40, 504, 2160, 6160, 14040, 27720, 49504, 82080, 128520, 192280, 277200, 387504, 527800, 703080, 918720, 1180480, 1494504, 1867320, 2305840, 2817360, 3409560, 4090504, 4868640, 5752800, 6752200, 7876440, 9135504, 10539760, 12099960, 13827240, 15733120, 17829504
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • Konrad Knopp, Theory and application of infinite series, Dover, p. 268

Crossrefs

Programs

  • Mathematica
    Table[16n^4+96n^3+196n^2+156n+40,{n,0,40}]
  • PARI
    my(x='x+O('x^32)); Vec(-8*(5+38*x+5*x^2)/(x-1)^5) \\ Elmo R. Oliveira, Aug 28 2025

Formula

Sum_{n>=1} 1/a(n) = 1/36 Sum_{n>=1} (-1)^n/a(n) = 5/36 - log(2)/6.
From Elmo R. Oliveira, Aug 28 2025: (Start)
G.f.: 8*(5 + 38*x + 5*x^2)/(1 - x)^5.
E.g.f.: 4*exp(x)*(10 + 116*x + 149*x^2 + 48*x^3 + 4*x^4).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A078371(n)*A033996(n+1). (End)

Extensions

More terms from Elmo R. Oliveira, Aug 28 2025

A144483 A144481(4n-3).

Original entry on oeis.org

5, 0, 6, 5, 6, 0, 5, 3, 3, 5, 0, 6, 5, 6, 0, 5, 3, 3, 5, 0, 6, 5, 6, 0, 5, 3, 3, 5, 0, 6, 5, 6, 0, 5, 3, 3, 5, 0, 6, 5, 6, 0, 5, 3, 3, 5, 0, 6, 5, 6, 0, 5, 3, 3
Offset: 1

Views

Author

Paul Curtz, Oct 12 2008

Keywords

Crossrefs

Cf. A078371.

Formula

Period 9: a(n+9)=a(n).

Extensions

Edited by R. J. Mathar, Dec 08 2008
Previous Showing 11-20 of 20 results.