cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A154372 Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
Offset: 0

Views

Author

Paul Curtz, Jan 08 2009

Keywords

Comments

From A152650/A152656,coefficients of other exponential polynomials(*). a(n) is triangle A152818 where terms of each column is divided by the beginning one. See A000004, A001787(n+1), A006043=2*A027472, A006044=6*A038846.
(*) Not factorial as written in A006044. See A000110, Bell-Touchard. Second diagonal is 1,4,9,16,25, denominators of Lyman's spectrum of hydrogen, A000290(n+1) which has homogeneous indices for denominators series of Rydberg-Ritz spectrum of hydrogen.
The matrix inverse starts
1;
-1, 1;
3, -4, 1;
-16, 24, -9, 1;
125, -200, 90, -16, 1;
-1296, 2160, -1080, 240, -25, 1;
16807, -28812, 15435, -3920, 525, -36, 1;
.. compare with A122525 (row reversed). - R. J. Mathar, Mar 22 2013
From Peter Bala, Jan 14 2015: (Start)
Exponential Riordan array [exp(z), z*exp(z)]. This triangle is the particular case a = 0, b = 1, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. Cf. A059297.
This is the triangle of connection constants when expressing the monomials x^n as a linear combination of the basis polynomials (x - 1)*(x - k - 1)^(k-1), k = 0,1,2,.... For example, from row 3 we have x^3 = 1 + 12*(x - 1) + 9*(x - 1)*(x - 3) + (x - 1)*(x - 4)^2.
Let M be the infinite lower unit triangular array with (n,k)-th entry (k*(n - k + 1) + 1)/(k + 1)*binomial(n,k). M is the row reverse of A145033. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to the present triangle. See the Example section. (End)
T(n,k) is also the number of idempotent partial transformations of {1,2,...,n} having exactly k fixed points. - Geoffrey Critzer, Nov 25 2021

Examples

			With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1      \ /1        \ /1        \      /1        \
|1 1     ||0 1       ||0 1      |      |1  1      |
|1 3 1   ||0 1 1     ||0 0 1    |... = |1  4  1   |
|1 6 5 1 ||0 1 3 1   ||0 0 1 1  |      |1 12  9  1|
|...     ||0 1 6 5 1 ||0 0 1 3 1|      |...       |
|...     ||...       ||...      |      |          |
- _Peter Bala_, Jan 13 2015
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(k+1)^(n-k)*Binomial(n,k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)

Formula

T(n,k) = (k+1)^(n-k)*binomial(n,k). k!*T(n,k) gives the entries for A152818 read as a triangular array.
E.g.f.: exp(x*(1+t*exp(x))) = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + (1+12*t+9*t^2+t*3)*x^3/3! + .... O.g.f.: Sum_{k>=1} (t*x)^(k-1)/(1-k*x)^k = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... Row sums are A080108. - Peter Bala, Oct 09 2011
From Peter Bala, Jan 14 2015: (Start)
Recurrence equation: T(n+1,k+1) = T(n,k+1) + Sum_{j = 0..n-k} (j + 1)*binomial(n,j)*T(n-j,k) with T(n,0) = 1 for all n.
Equals the matrix product A007318 * A059297. (End)

A174493 a(n) = coefficient of x^n/(n-1)! in the 3-fold iteration of x*exp(x).

Original entry on oeis.org

1, 3, 15, 102, 861, 8598, 98547, 1270160, 18138601, 283754826, 4818884319, 88186786020, 1728395865021, 36091833338174, 799408841413051, 18708996086926272, 461095012437724881, 11931573394008790290
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Examples

			E.g.f.: x + 3*x^2 + 15*x^3/2! + 102*x^4/3! + 861*x^5/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n)));for(i=1,3,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}
    
  • PARI
    {a(n)=sum(k=0,n-1,binomial(n-1,k)*sum(j=0,n-1-k,binomial(n-1-k,j)*(k+1)^j*(k+1+j)^(n-1-k-j)))}

Formula

a(n) = Sum_{k=0..n, j=0..n-k} C(n,k)*C(n-k,j)*(k+1)^j*(k+1+j)^(n-k-j).
O.g.f.: Sum_{n>=1} A080108(n)*x^n/(1-n*x)^n, where A080108(n) = [x^n/(n-1)! ] E(E(x)) and E(x) = x*exp(x).

A174494 a(n) = coefficient of x^n/(n-1)! in the 4-fold iteration of x*exp(x).

Original entry on oeis.org

1, 4, 28, 274, 3400, 50734, 880312, 17357736, 382463824, 9298086490, 246914949376, 7104423326356, 220000621675912, 7290852811359654, 257332393857067720, 9632914084301343304, 381050245422453157408
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Examples

			E.g.f.: x + 4*x^2 + 28*x^3/2! + 274*x^4/3! + 3400*x^5/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n)));for(i=1,4,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}
    
  • PARI
    {a(n)=sum(k=0,n-1,binomial(n-1,k)*sum(j=0,n-1-k,binomial(n-1-k,j)*(k+1)^j*sum(i=0,n-1-k-j,binomial(n-1-k-j,i)*(k+1+j)^i*(k+1+j+i)^(n-1-k-j-i))))}

Formula

O.g.f.: Sum_{n>=1} A174493(n)*x^n/(1-n*x)^n, where A174493(n) = [x^n/(n-1)! ] E(E(E(x))) and E(x) = x*exp(x).
a(n)=Sum_{k=0..n-1, j=0..n-1-k, i=0..n-1-k-j} C(n-1,k)*C(n-1-k,j)*C(n-1-k-j,i)*(k+1)^j*(k+1+j)^i*(k+1+j+i)^(n-1-k-j-i).
E.g.f. equals the 2-fold iteration of the e.g.f. of A080108.

A174495 a(n) = coefficient of x^n/(n-1)! in the 5-fold iteration of x*exp(x).

Original entry on oeis.org

1, 5, 45, 575, 9425, 187455, 4367245, 116322645, 3479863345, 115353325835, 4192244804645, 165607074622665, 7060695856372105, 322973775761169135, 15770136907303728205, 818373668098974428885, 44963322539225628107105
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Examples

			E.g.f.: x + 5*x^2 + 45*x^3/2! + 575*x^4/3! + 9425*x^5/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n))); for(i=1,5,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}

Formula

O.g.f.: Sum_{n>=1} A174494(n)*x^n/(1-n*x)^n, where A174494(n) = [x^n/(n-1)! ] E(E(E(E(x)))) and E(x) = x*exp(x).

A355472 Expansion of Sum_{k>=0} (x/(1 - k^3 * x))^k.

Original entry on oeis.org

1, 1, 2, 18, 275, 6680, 258897, 13646776, 959706169, 88651586048, 10272048320897, 1462972094910224, 253355867842243905, 52387780870782231424, 12745274175326359046785, 3615579524073585972982544, 1184928928181459098548941633, 444427677344332049739011858432
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-k^3*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, k^(3*(n-k))*binomial(n-1, k-1)));

Formula

a(n) = Sum_{k=1..n} k^(3*(n-k)) * binomial(n-1,k-1) for n > 0.

A356811 a(n) = Sum_{k=0..n} (k*n+1)^(n-k) * binomial(n,k).

Original entry on oeis.org

1, 2, 8, 71, 1040, 22457, 676000, 26861977, 1347932416, 82873789793, 6114540967424, 532596023373713, 53990083205042176, 6289985311473281329, 833180470332123750400, 124356049859476364116193, 20754548375601491155681280, 3847574240184742568296430273
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k*n+1)^(n-k)*binomial(n, k));

Formula

a(n) = n! * [x^n] exp( x * (exp(n * x) + 1) ).
a(n) = [x^n] Sum_{k>=0} x^k / (1 - (n*k+1)*x)^(k+1).

A360708 Expansion of Sum_{k>=0} (x^2 / (1 - k*x))^k.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 14, 42, 136, 479, 1825, 7433, 32053, 145608, 695081, 3479117, 18209842, 99373513, 563920590, 3320674902, 20255823092, 127799984935, 832807892861, 5597481205009, 38753768384761, 276057156622776, 2021100095469577, 15193591060371577
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n-k-1,k-1] * k^(n-2*k), {k,0,n/2}], {n,1,40}]] (* Vaclav Kotesovec, Feb 20 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^2/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n\2, k^(n-2*k)*binomial(n-k-1, k-1)));

Formula

a(n) = Sum_{k=1..floor(n/2)} k^(n-2*k) * binomial(n-k-1,k-1) for n > 0.

A360709 Expansion of Sum_{k>=0} (x^3 / (1 - k*x))^k.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 5, 13, 34, 90, 247, 720, 2256, 7568, 26814, 98982, 377541, 1484254, 6021789, 25271173, 109850447, 494355359, 2298362532, 11008133629, 54175202125, 273460921605, 1414449612648, 7494262602464, 40669492399396
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^3/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n\3, k^(n-3*k)*binomial(n-2*k-1, k-1)));

Formula

a(n) = Sum_{k=1..floor(n/3)} k^(n-3*k) * binomial(n-2*k-1,k-1) for n > 0.

A098697 Euler-Seidel matrix T(k,n) with start sequence A000248, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 4, 3, 23, 17, 13, 10, 104, 81, 64, 51, 41, 537, 433, 352, 288, 237, 196, 3100, 2563, 2130, 1778, 1490, 1253, 1057, 19693, 16593, 14030, 11900, 10122, 8632, 7379, 6322, 136064, 116371, 99778, 85748, 73848, 63726, 55094, 47715, 41393
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2004

Keywords

Comments

In an Euler-Seidel matrix, the rows are consecutive pairwise sums and the columns consecutive differences, with the first column the inverse binomial transform of the start sequence.

Examples

			1,1,3,10,41,196,1057,
2,4,13,51,237,1253,7379,
6,17,64,288,1490,8632,55094,
23,81,352,1778,10122,63726,437810,
104,433,2130,11900,73848,501536,3687056,
		

Crossrefs

First column is A080108, main diagonal is in A098698.

Programs

  • Mathematica
    a248[0] = 1; a248[n_] := Sum[Binomial[n, k]*(n - k)^k, {k, 0, n}];
    T[0, n_] := T[0, n] = a248[n];
    T[k_, n_] := T[k, n] = T[k - 1, n] + T[k - 1, n + 1];
    Table[T[k - n, n], {k, 0, 9}, {n, 0, k}] // Flatten (* Jean-François Alcover, Nov 08 2017 *)

Formula

Recurrence: T(0, n) = A000248(n), T(k, n) = T(k-1, n) + T(k-1, n+1).

A174496 a(n) = coefficient of x^n/(n-1)! in the 6-fold iteration of x*exp(x).

Original entry on oeis.org

1, 6, 66, 1041, 21216, 527631, 15441636, 518651881, 19630068656, 825581830491, 38159948599956, 1921319136589221, 104603652465885096, 6120324106269585751, 382829011514506048556, 25484466375276284094561
Offset: 1

Views

Author

Paul D. Hanna, Apr 17 2010

Keywords

Examples

			E.g.f.: x + 6*x^2 + 66*x^3/2! + 1041*x^4/3! + 21216*x^5/4! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, xEx=x*exp(x+x*O(x^n))); for(i=1,6,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}

Formula

O.g.f.: Sum_{n>=1} A174495(n)*x^n/(1-n*x)^n, where A174495(n) = [x^n/(n-1)! ] E(E(E(E(E(x))))) and E(x) = x*exp(x).
E.g.f. equals the 2-fold iteration of the e.g.f. of A174493.
E.g.f. equals the 3-fold iteration of the e.g.f. of A080108.
Previous Showing 11-20 of 32 results. Next