A154372
Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
Offset: 0
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \ /1 \ /1 \ /1 \
|1 1 ||0 1 ||0 1 | |1 1 |
|1 3 1 ||0 1 1 ||0 0 1 |... = |1 4 1 |
|1 6 5 1 ||0 1 3 1 ||0 0 1 1 | |1 12 9 1|
|... ||0 1 6 5 1 ||0 0 1 3 1| |... |
|... ||... ||... | | |
- _Peter Bala_, Jan 13 2015
-
/* As triangle */ [[(k+1)^(n-k)*Binomial(n,k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
-
T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)
A174493
a(n) = coefficient of x^n/(n-1)! in the 3-fold iteration of x*exp(x).
Original entry on oeis.org
1, 3, 15, 102, 861, 8598, 98547, 1270160, 18138601, 283754826, 4818884319, 88186786020, 1728395865021, 36091833338174, 799408841413051, 18708996086926272, 461095012437724881, 11931573394008790290
Offset: 1
E.g.f.: x + 3*x^2 + 15*x^3/2! + 102*x^4/3! + 861*x^5/4! +...
-
{a(n)=local(F=x, xEx=x*exp(x+x*O(x^n)));for(i=1,3,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}
-
{a(n)=sum(k=0,n-1,binomial(n-1,k)*sum(j=0,n-1-k,binomial(n-1-k,j)*(k+1)^j*(k+1+j)^(n-1-k-j)))}
A174494
a(n) = coefficient of x^n/(n-1)! in the 4-fold iteration of x*exp(x).
Original entry on oeis.org
1, 4, 28, 274, 3400, 50734, 880312, 17357736, 382463824, 9298086490, 246914949376, 7104423326356, 220000621675912, 7290852811359654, 257332393857067720, 9632914084301343304, 381050245422453157408
Offset: 1
E.g.f.: x + 4*x^2 + 28*x^3/2! + 274*x^4/3! + 3400*x^5/4! +...
-
{a(n)=local(F=x, xEx=x*exp(x+x*O(x^n)));for(i=1,4,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}
-
{a(n)=sum(k=0,n-1,binomial(n-1,k)*sum(j=0,n-1-k,binomial(n-1-k,j)*(k+1)^j*sum(i=0,n-1-k-j,binomial(n-1-k-j,i)*(k+1+j)^i*(k+1+j+i)^(n-1-k-j-i))))}
A174495
a(n) = coefficient of x^n/(n-1)! in the 5-fold iteration of x*exp(x).
Original entry on oeis.org
1, 5, 45, 575, 9425, 187455, 4367245, 116322645, 3479863345, 115353325835, 4192244804645, 165607074622665, 7060695856372105, 322973775761169135, 15770136907303728205, 818373668098974428885, 44963322539225628107105
Offset: 1
E.g.f.: x + 5*x^2 + 45*x^3/2! + 575*x^4/3! + 9425*x^5/4! +...
-
{a(n)=local(F=x, xEx=x*exp(x+x*O(x^n))); for(i=1,5,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}
A355472
Expansion of Sum_{k>=0} (x/(1 - k^3 * x))^k.
Original entry on oeis.org
1, 1, 2, 18, 275, 6680, 258897, 13646776, 959706169, 88651586048, 10272048320897, 1462972094910224, 253355867842243905, 52387780870782231424, 12745274175326359046785, 3615579524073585972982544, 1184928928181459098548941633, 444427677344332049739011858432
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-k^3*x))^k))
-
a(n) = if(n==0, 1, sum(k=1, n, k^(3*(n-k))*binomial(n-1, k-1)));
A356811
a(n) = Sum_{k=0..n} (k*n+1)^(n-k) * binomial(n,k).
Original entry on oeis.org
1, 2, 8, 71, 1040, 22457, 676000, 26861977, 1347932416, 82873789793, 6114540967424, 532596023373713, 53990083205042176, 6289985311473281329, 833180470332123750400, 124356049859476364116193, 20754548375601491155681280, 3847574240184742568296430273
Offset: 0
A360708
Expansion of Sum_{k>=0} (x^2 / (1 - k*x))^k.
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 14, 42, 136, 479, 1825, 7433, 32053, 145608, 695081, 3479117, 18209842, 99373513, 563920590, 3320674902, 20255823092, 127799984935, 832807892861, 5597481205009, 38753768384761, 276057156622776, 2021100095469577, 15193591060371577
Offset: 0
-
Join[{1},Table[Sum[Binomial[n-k-1,k-1] * k^(n-2*k), {k,0,n/2}], {n,1,40}]] (* Vaclav Kotesovec, Feb 20 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^2/(1-k*x))^k))
-
a(n) = if(n==0, 1, sum(k=1, n\2, k^(n-2*k)*binomial(n-k-1, k-1)));
A360709
Expansion of Sum_{k>=0} (x^3 / (1 - k*x))^k.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 5, 13, 34, 90, 247, 720, 2256, 7568, 26814, 98982, 377541, 1484254, 6021789, 25271173, 109850447, 494355359, 2298362532, 11008133629, 54175202125, 273460921605, 1414449612648, 7494262602464, 40669492399396
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^3/(1-k*x))^k))
-
a(n) = if(n==0, 1, sum(k=1, n\3, k^(n-3*k)*binomial(n-2*k-1, k-1)));
A098697
Euler-Seidel matrix T(k,n) with start sequence A000248, read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 3, 23, 17, 13, 10, 104, 81, 64, 51, 41, 537, 433, 352, 288, 237, 196, 3100, 2563, 2130, 1778, 1490, 1253, 1057, 19693, 16593, 14030, 11900, 10122, 8632, 7379, 6322, 136064, 116371, 99778, 85748, 73848, 63726, 55094, 47715, 41393
Offset: 0
1,1,3,10,41,196,1057,
2,4,13,51,237,1253,7379,
6,17,64,288,1490,8632,55094,
23,81,352,1778,10122,63726,437810,
104,433,2130,11900,73848,501536,3687056,
-
a248[0] = 1; a248[n_] := Sum[Binomial[n, k]*(n - k)^k, {k, 0, n}];
T[0, n_] := T[0, n] = a248[n];
T[k_, n_] := T[k, n] = T[k - 1, n] + T[k - 1, n + 1];
Table[T[k - n, n], {k, 0, 9}, {n, 0, k}] // Flatten (* Jean-François Alcover, Nov 08 2017 *)
A174496
a(n) = coefficient of x^n/(n-1)! in the 6-fold iteration of x*exp(x).
Original entry on oeis.org
1, 6, 66, 1041, 21216, 527631, 15441636, 518651881, 19630068656, 825581830491, 38159948599956, 1921319136589221, 104603652465885096, 6120324106269585751, 382829011514506048556, 25484466375276284094561
Offset: 1
E.g.f.: x + 6*x^2 + 66*x^3/2! + 1041*x^4/3! + 21216*x^5/4! +...
-
{a(n)=local(F=x, xEx=x*exp(x+x*O(x^n))); for(i=1,6,F=subst(F, x, xEx));(n-1)!*polcoeff(F, n)}
Comments