Original entry on oeis.org
1, 4, 64, 1778, 73848, 4188592, 306690520, 27893327856, 3063657097664, 397720778283584, 59997757426314624, 10373545999796847232, 2032368096229682220160, 446879795164524710777856
Offset: 0
-
a248[0] = 1; a248[n_] := Sum[Binomial[n, k]*(n - k)^k, {k, 0, n}];
T[0, n_] := T[0, n] = a248[n]; T[k_, n_] := T[k, n] = T[k - 1, n] + T[k - 1, n + 1];
a[n_] := T[n, n];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 08 2017 *)
A000248
Expansion of e.g.f. exp(x*exp(x)).
Original entry on oeis.org
1, 1, 3, 10, 41, 196, 1057, 6322, 41393, 293608, 2237921, 18210094, 157329097, 1436630092, 13810863809, 139305550066, 1469959371233, 16184586405328, 185504221191745, 2208841954063318, 27272621155678841, 348586218389733556, 4605223387997411873
Offset: 0
a(3)=10 since, for B={1,2,3}, we have 10 functions: 1 function of the type f:empty set->B; 6 functions of the type f:{x}->B\{x}; and 3 functions of the type f:{x,y}->B\{x,y}. - _Dennis P. Walsh_, Dec 05 2013
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.32(d).
- Alois P. Heinz, Table of n, a(n) for n = 0..541 (first 101 terms from T. D. Noe)
- Rudolf Berghammer, Jules Desharnais, and Michael Winter, Counting Specific Classes of Relations Regarding Fixed Points and Reflexive Points, arXiv:2505.00140 [cs.DM], 2025. See p. 24.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See p. 25.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 131.
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885. See Ex. 2.13.
- Bernhard Harris and Lowell Schoenfeld, The number of idempotent elements in symmetric semigroups, J. Combin. Theory, 3 (1967), 122-135.
- Bernhard Harris and Lowell Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Illinois Journal of Mathematics, Volume 12, Issue 2 (1968), 264-277.
- Gottfried Helms, Pascalmatrix tetrated
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 117
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000 terms)
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- John Riordan, Forests of labeled trees, J. Combin. Theory, 5 (1968), 90-103.
- John Riordan, Letter to N. J. A. Sloane, Oct. 1970
- John Riordan and N. J. A. Sloane, Correspondence, 1974
- Emre Sen, Exceptional Sequences and Idempotent Functions, arXiv:1909.05887 [math.RT], 2019.
- Melvin Tainiter, A characterization of idempotents in semigroups, J. Combinat. Theory, 5 (1968), 370-373.
- Haoliang Wang and Robert Simon, The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Feb 01 2020
-
A000248 := proc(n) local k; add(k^(n-k)*binomial(n, k), k=0..n); end; # Robert FERREOL, Oct 11 2007
a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j) *(j+1) *a(n-1-j), j=0..n-1) fi end: seq(a(n), n=0..20); # Zerinvary Lajos, Mar 28 2009
-
CoefficientList[Series[Exp[x Exp[x]],{x,0,20}],x]*Table[n!,{n,0,20}]
a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[(Binomial[n - 1, j] + (n - 1) Binomial[n - 2, j]) a[j], {j, 0, n - 2}]; Table[a[n], {n, 0, 20}] (* David Callan, Oct 04 2013 *)
Flatten[{1,Table[Sum[Binomial[n,k]*(n-k)^k,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jul 13 2014 *)
Table[Sum[BellY[n, k, Range[n]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
a(n)=sum(k=0,n,binomial(n,k)*(n-k)^k); \\ Paul D. Hanna, Jun 26 2009
-
x='x+O('x^66); Vec(serlaplace(exp(x*exp(x)))) \\ Joerg Arndt, Oct 06 2013
-
# uses[bell_matrix from A264428]
B = bell_matrix(lambda k: k+1, 20)
print([sum(B.row(n)) for n in range(20)]) # Peter Luschny, Sep 03 2019
In view of the multiple appearances of this sequence, I replaced the definition with the simple exponential generating function. -
N. J. A. Sloane, Apr 16 2018
A080108
a(n) = Sum_{k=1..n} k^(n-k)*binomial(n-1,k-1).
Original entry on oeis.org
1, 2, 6, 23, 104, 537, 3100, 19693, 136064, 1013345, 8076644, 68486013, 614797936, 5818490641, 57846681092, 602259154853, 6548439927680, 74180742421185, 873588590481988, 10674437936521069, 135097459659312176
Offset: 1
G.f. = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 537*x^6 + 3100*x^7 + 19693*x^8 + ...
The a(4) = 23 pointed set partitions of 1[1 2 3 4] are 1[1[1 2 3 4]], 1[1[1] 2[2 3 4]], 1[1[1] 3[2 3 4]], 1[1[1] 4[2 3 4]], 1[1[1 2] 3[3 4]], 1[1[1 2] 4[3 4]], 1[1[1 3] 2[2 4]], 1[1[1 3] 4[2 4]], 1[1[1 4] 2[2 3]], 1[1[1 4] 3[2 3]], 1[1[1 2 3] 4[4]], 1[1[1 2 4] 3[3]], 1[1[1 3 4] 2[2]], 1[1[1] 2[2] 3[3 4]], 1[1[1] 2[2] 4[3 4]], 1[1[1] 2[2 3] 4[4]], 1[1[1] 2[2 4] 3[3]], 1[1[1] 3[3] 4[2 4]], 1[1[1] 3[2 3] 4[4]], 1[1[1 2] 3[3] 4[4]], 1[1[1 3] 2[2] 4[4]], 1[1[1 4] 2[2] 3[3]], 1[1[1] 2[2] 3[3] 4[4]].
-
[(1/n)*(&+[Binomial(n,k)*k^(n-k+1): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Jan 22 2023
-
Table[Sum[k^(n-k) Binomial[n-1,k-1],{k,n}],{n,30}] (* Harvey P. Dale, Aug 19 2012 *)
Table[SeriesCoefficient[Sum[x^k/(1-k*x)^k,{k,0,n}],{x,0,n}], {n,1,20}] (* Vaclav Kotesovec, Aug 06 2014 *)
CoefficientList[Series[E^(x*(1+E^x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 06 2014 *)
-
a(n)=sum(k=1,n, k^(n-k)*binomial(n-1,k-1)) \\ Anders Hellström, Sep 27 2015
-
def A080108(n): return (1/n)*sum(binomial(n,k)*k^(n-k+1) for k in range(n+1))
[A080108(n) for n in range(1,31)] # G. C. Greubel, Jan 22 2023
Showing 1-3 of 3 results.
Comments