cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A358588 Number of n-node ordered rooted trees of height equal to the number of internal (non-leaf) nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 41, 171, 633, 2171, 7070, 22195, 67830, 203130, 598806, 1743258, 5023711, 14356226, 40737383, 114904941, 322432215, 900707165, 2506181060, 6948996085, 19207795836, 52944197508, 145567226556, 399314965956, 1093107693133, 2986640695436
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Examples

			The a(5) = 1 and a(6) = 8 ordered trees:
  ((o)(o))  ((o)(o)o)
            ((o)(oo))
            ((o)o(o))
            ((oo)(o))
            (o(o)(o))
            (((o))(o))
            (((o)(o)))
            ((o)((o)))
		

Crossrefs

For leaves instead of height we have A000891, unordered A185650 aerated.
The unordered version is A358587, ranked by A358576.
For leaves instead of internal nodes we have A358590, unordered A358589.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,[_],{0,Infinity}]==Depth[#]-1&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358590.
    seq(n) = {Vec(R(n, (h,p)->polcoef(subst(p, x, x/y), -h, y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Formula

Conjectures from Chai Wah Wu, Apr 14 2024: (Start)
a(n) = 9*a(n-1) - 32*a(n-2) + 58*a(n-3) - 58*a(n-4) + 32*a(n-5) - 9*a(n-6) + a(n-7) for n > 7.
G.f.: x^5*(-x^2 + x - 1)/((x - 1)^3*(x^2 - 3*x + 1)^2). (End)

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 01 2023

A080934 Square array read by antidiagonals of number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 8, 1, 0, 1, 1, 2, 5, 13, 16, 1, 0, 1, 1, 2, 5, 14, 34, 32, 1, 0, 1, 1, 2, 5, 14, 41, 89, 64, 1, 0, 1, 1, 2, 5, 14, 42, 122, 233, 128, 1, 0, 1, 1, 2, 5, 14, 42, 131, 365, 610, 256, 1, 0, 1, 1, 2, 5, 14, 42, 132, 417, 1094, 1597, 512, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

Number of permutations in S_n avoiding both 132 and 123...k.
T(n,k) = number of rooted ordered trees on n nodes of depth <= k. Also, T(n,k) = number of {1,-1} sequences of length 2n summing to 0 with all partial sums are >=0 and <= k. Also, T(n,k) = number of closed walks of length 2n on a path of k nodes starting from (and ending at) a node of degree 1. - Mitch Harris, Mar 06 2004
Also T(n,k) = k-th coefficient in expansion of the rational function R(n), where R(1) = 1, R(n+1) = 1/(1-x*R(n)), which means also that lim(n->inf,R(n)) = g.f. of Catalan numbers (A000108) wherever it has real value (see Mansour article). - Clark Kimberling and Ralf Stephan, May 26 2004
Row n of the array gives Taylor series expansion of F_n(t)/F_{n+1}(t), where F_n(t) are the Fibonacci polynomials defined in A259475 [Kreweras, 1970]. - N. J. A. Sloane, Jul 03 2015

Examples

			T(3,2) = 4 since the paths of length 2*3 (7 points) with all values less than or equal to 2 can take the routes 0101010, 0101210, 0121010 or 0121210, but not 0123210.
From _Peter Luschny_, Aug 27 2014: (Start)
Trees with n nodes and height <= h:
h\n  1  2  3  4   5   6    7    8     9    10     11
---------------------------------------------------------
[ 1] 1, 0, 0, 0,  0,  0,   0,   0,    0,    0,     0, ...  A063524
[ 2] 1, 1, 1, 1,  1,  1,   1,   1,    1,    1,     1, ...  A000012
[ 3] 1, 1, 2, 4,  8, 16,  32,  64,  128,  256,   512, ...  A011782
[ 4] 1, 1, 2, 5, 13, 34,  89, 233,  610, 1597,  4181, ...  A001519
[ 5] 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281,  9842, ...  A124302
[ 6] 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, ...  A080937
[ 7] 1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, ...  A024175
[ 8] 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, ...  A080938
[ 9] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, ...  A033191
[10] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, ...  A211216
---------------------------------------------------------
The generating functions are listed in A211216. Note that the values up to the main diagonal are the Catalan numbers A000108.
(End)
		

Crossrefs

Cf. A000108, A079214, A080935, A080936. Rows include A000012, A057427, A040000 (offset), columns include (essentially) A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191, A211216. Main diagonal is A000108.
Cf. A094718 (involutions). Cf. also A259475.

Programs

  • Maple
    # As a triangular array:
    b:= proc(x, y, k) option remember; `if`(y>min(k, x) or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, k)+ b(x-1, y+1, k)))
        end:
    A:= (n, k)-> b(2*n, 0, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 06 2012
    # As a square array:
    A := proc(n,k) option remember; local j; if n = 1 then 1 elif k = 1 then 0 else add(A(n-j,k)*A(j,k-1), j=1..n-1) fi end:
    linalg[matrix](10, 12, (n,k) -> A(k,n)); # Peter Luschny, Aug 27 2014
  • Mathematica
    A[n_, k_] := A[n, k] = Which[n == 1, 1, k == 1, 0, True, Sum[A[n-j, k]*A[j, k-1], {j, 1, n-1}]]; Table[A[k-n+1, n], {k, 1, 13}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Peter Luschny *)
  • PARI
    A(N, K) = {
      my(m = matrix(N, K, n, k, n==1));
      for (n = 2, N,
      for (k = 2, K,
           m[n,k] = sum(i = 1, n-1, m[n-i,k] * m[i,k-1])));
      return(m);
    }
    A(11,10)~  \\ Gheorghe Coserea, Jan 13 2016

Formula

T(n, k) = Sum_{0A080935(n, k) = T(n, k-1)+A080936(n, k); for k>=n T(n, k) = A000108(n).
T(n, k) = 2^(2n+1)/(k+2) * Sum_{i=1..k+1} (sin(Pi*i/(k+2))*cos(Pi*i/(k+2))^n)^2 for n>=1. - Herbert Kociemba, Apr 28 2004
G.f. of n-th row: B(n)/B(n+1) where B(j)=[(1+sqrt(1-4x))/2]^j-[(1-sqrt(1-4x))/2]^j.

A289481 Number A(n,k) of Dyck paths of semilength k*n and height n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 7, 1, 0, 1, 1, 31, 57, 1, 0, 1, 1, 127, 1341, 484, 1, 0, 1, 1, 511, 26609, 59917, 4199, 1, 0, 1, 1, 2047, 497845, 5828185, 2665884, 36938, 1, 0, 1, 1, 8191, 9096393, 517884748, 1244027317, 117939506, 328185, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2017

Keywords

Comments

For fixed k > 1, A(n,k) ~ 2^(2*k*n + 3) * k^(2*k*n + 1/2) / ((k-1)^((k-1)*n + 1/2) * (k+1)^((k+1)*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017

Examples

			Square array A(n,k) begins:
  1, 1,    1,       1,          1,            1, ...
  0, 1,    1,       1,          1,            1, ...
  0, 1,    7,      31,        127,          511, ...
  0, 1,   57,    1341,      26609,       497845, ...
  0, 1,  484,   59917,    5828185,    517884748, ...
  0, 1, 4199, 2665884, 1244027317, 517500496981, ...
		

Crossrefs

Rows n=0-2 give: A000012, A057427, A083420(k+1).
Main diagonal gives A289482.
Cf. A080936.

Programs

  • Maple
    b:= proc(x, y, k) option remember;
          `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
          `if`(y <  min(x-1, k), b(x-1, y+1, k), 0))
        end:
    A:= (n, k)-> `if`(n=0, 1, b(2*n*k, 0, n)-b(2*n*k, 0, n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[yIndranil Ghosh, Jul 07 2017, after Maple code *)

A291883 Number T(n,k) of symmetrically unique Dyck paths of semilength n and height k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 9, 11, 4, 1, 0, 1, 19, 31, 19, 5, 1, 0, 1, 35, 91, 69, 29, 6, 1, 0, 1, 71, 250, 252, 127, 41, 7, 1, 0, 1, 135, 690, 855, 540, 209, 55, 8, 1, 0, 1, 271, 1863, 2867, 2117, 1005, 319, 71, 9, 1, 0, 1, 527, 5017, 9339, 8063, 4411, 1705, 461, 89, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 05 2017

Keywords

Examples

			: T(4,2) = 5:       /\      /\        /\/\    /\  /\    /\/\/\
:              /\/\/  \  /\/  \/\  /\/    \  /  \/  \  /      \
:
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   2,   1;
  0, 1,   5,   3,   1;
  0, 1,   9,  11,   4,   1;
  0, 1,  19,  31,  19,   5,   1;
  0, 1,  35,  91,  69,  29,   6,  1;
  0, 1,  71, 250, 252, 127,  41,  7, 1;
  0, 1, 135, 690, 855, 540, 209, 55, 8, 1;
  ...
		

Crossrefs

Main and first two lower diagonals give A000012, A001477, A028387(n-1) for n>0.
Row sums give A007123(n+1).
T(2n,n) give A291885.

Programs

  • Maple
    b:= proc(x, y, k) option remember; `if`(x=0, z^k, `if`(y0, b(x-1, y-1, k), 0))
        end:
    g:= proc(x, y, k) option remember; `if`(x=0, z^k, `if`(y>0,
          g(x-2, y-1, k), 0)+ g(x-2, y+1, max(y+1, k)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i)/2, i=0..n))(b(2*n, 0$2)+g(2*n, 0$2)):
    seq(T(n), n=0..14);
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[x == 0, z^k, If[y < x - 1, b[x - 1, y + 1, Max[y + 1, k]], 0] + If[y > 0, b[x - 1, y - 1, k], 0]];
    g[x_, y_, k_] := g[x, y, k] = If[x == 0, z^k, If[y > 0, g[x - 2, y - 1, k], 0] + g[x - 2, y + 1, Max[y + 1, k]]];
    T[n_] := Function[p, Table[Coefficient[p, z, i]/2, {i, 0, n}]][b[2*n, 0, 0] + g[2*n, 0, 0]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import Poly, Symbol, flatten
    z=Symbol('z')
    @cacheit
    def b(x, y, k): return z**k if x==0 else (b(x - 1, y + 1, max(y + 1, k)) if y0 else 0)
    @cacheit
    def g(x, y, k): return z**k if x==0 else (g(x - 2, y - 1, k) if y>0 else 0) + g(x - 2, y + 1, max(y + 1, k))
    def T(n): return 1 if n==0 else [i//2 for i in Poly(b(2*n, 0, 0) + g(2*n, 0, 0)).all_coeffs()[::-1]]
    print(flatten(map(T, range(15)))) # Indranil Ghosh, Sep 06 2017

Formula

T(n,k) = (A080936(n,k) + A132890(n,k))/2.
Sum_{k=1..n} k * T(n,k) = A291886(n).

A358729 Difference between the number of nodes and the node-height of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 3, 1, 3, 2, 2, 3, 1, 2, 3, 3, 2, 4, 3, 1, 3, 0, 4, 2, 2, 3, 4, 2, 3, 3, 3, 1, 4, 2, 2, 4, 3, 2, 4, 4, 4, 3, 3, 3, 5, 3, 4, 4, 2, 1, 4, 3, 1, 5, 5, 4, 3, 2, 3, 4, 4, 2, 5, 3, 3, 5, 4, 3, 4, 1, 4, 6, 2, 2, 5, 4, 3, 3, 3, 3, 5, 4, 4, 2, 3, 4, 5, 3, 5, 4, 5, 2, 4, 4, 4, 5, 4, 3, 6
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Because the number of distinct terminal subtrees of the rooted tree with Matula-Goebel number n, i.e., A317713(n) (= 1+A324923(n)), is always at least one larger than the depth of the same tree (= A109082(n)), it follows that a(n) >= A366386(n) for all n. - Antti Karttunen, Oct 23 2023

Examples

			The tree (oo(oo(o))) with Matula-Goebel number 148 has 8 nodes and node-height 4, so a(148) = 4.
		

Crossrefs

Positions of 0's are A007097.
Positions of first appearances are A358730.
Positions of 1's are A358731.
Other differences: A358580, A358724, A358726.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],_,{0,Infinity}]-(Depth[MGTree[n]]-1),{n,100}]
  • PARI
    A061775(n) = if(1==n, 1, if(isprime(n), 1+A061775(primepi(n)), {my(pfs,t,i); pfs=factor(n); pfs[,1]=apply(t->A061775(t),pfs[,1]); (1-bigomega(n)) + sum(i=1, omega(n), pfs[i,1]*pfs[i,2])}));
    A358552(n) = { my(v=factor(n)[, 1], d=0); while(#v, d++; v=fold(setunion, apply(p->factor(primepi(p))[, 1]~, v))); (1+d); }; \\ (after program given in A109082 by Kevin Ryde, Sep 21 2020)
    A358729(n) = (A061775(n)-A358552(n)); \\ Antti Karttunen, Oct 23 2023

Formula

a(n) = A061775(n) - A358552(n).
a(n) = A196050(n) - A109082(n). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 23 2023

A358591 Number of 2n-node rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.

Original entry on oeis.org

0, 0, 2, 17, 94, 464, 2162, 9743, 42962, 186584, 801316, 3412034, 14430740, 60700548, 254180426, 1060361147, 4409342954, 18285098288, 75645143516, 312286595342, 1286827096964, 5293833371408, 21745951533236, 89208948855542, 365523293690804, 1496048600896784
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(3) = 2 and a(4) = 17 trees:
  ((o)(oo))  (((o))(ooo))
  (o(o)(o))  (((o)(ooo)))
             (((oo))(oo))
             (((oo)(oo)))
             ((o)((ooo)))
             ((o)(o(oo)))
             ((o)(oo(o)))
             ((o(o)(oo)))
             ((oo)(o(o)))
             ((oo(o)(o)))
             (o((o))(oo))
             (o((o)(oo)))
             (o(o)((oo)))
             (o(o)(o(o)))
             (o(o(o)(o)))
             (oo((o)(o)))
             (oo(o)((o)))
		

Crossrefs

For leaves = internals we have A185650 aerated, ranked by A358578.
For height = internals we have A358587, ranked by A358576, ordered A358588.
For height = leaves we have A358589, ranked by A358577, ordered A358590.
These trees are ranked by A358592.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,[_],{0,Infinity}]==Count[#,{},{0,Infinity}]==Depth[#]-1&]],{n,2,15,2}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vecrev(R(2*n, (h,p)->if(h<=n, x^h*polcoef(polcoef(p, 2*h, x), h, y))), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 01 2023

A358585 Number of ordered rooted trees with n nodes, most of which are leaves.

Original entry on oeis.org

1, 0, 1, 1, 7, 11, 66, 127, 715, 1549, 8398, 19691, 104006, 258194, 1337220, 3467115, 17678835, 47440745, 238819350, 659060677, 3282060210, 9271024542, 45741281820, 131788178171, 644952073662, 1890110798926, 9183676536076, 27316119923002, 131873975875180, 397407983278484
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2022

Keywords

Examples

			The a(1) = 1 through a(6) = 11 ordered trees:
  o  .  (oo)  (ooo)  (oooo)   (ooooo)
                     ((o)oo)  ((o)ooo)
                     ((oo)o)  ((oo)oo)
                     ((ooo))  ((ooo)o)
                     (o(o)o)  ((oooo))
                     (o(oo))  (o(o)oo)
                     (oo(o))  (o(oo)o)
                              (o(ooo))
                              (oo(o)o)
                              (oo(oo))
                              (ooo(o))
		

Crossrefs

For equality we have A000891, unordered A185650.
Odd-indexed terms are A065097.
The unordered version is A358581.
The opposite is the same, unordered A358582.
The non-strict version is A358586, unordered A358583.
A000108 counts ordered rooted trees, unordered A000081.
A001263 counts ordered rooted trees by nodes and leaves, unordered A055277.
A080936 counts ordered rooted trees by nodes and height, unordered A034781.
A090181 counts ordered rooted trees by nodes and internals, unord. A358575.
A358590 counts square ordered trees, unordered A358589 (ranked by A358577).

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,10}]
  • PARI
    a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) - if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024

Formula

From Andrew Howroyd, Jan 13 2024: (Start)
a(n) = Sum_{k=1..floor((n-1)/2)} A001263(n-1, k) for n >= 2.
a(2*n) = (A000108(2*n-1) - A000891(n-1))/2 for n >= 1;
a(2*n+1) = A000108(2*n)/2 for n >= 1. (End)

Extensions

a(16) onwards from Andrew Howroyd, Jan 13 2024

A258109 Number of balanced parenthesis expressions of length 2n and depth 3.

Original entry on oeis.org

1, 5, 18, 57, 169, 482, 1341, 3669, 9922, 26609, 70929, 188226, 497845, 1313501, 3459042, 9096393, 23895673, 62721698, 164531565, 431397285, 1130708866, 2962826465, 7761964833, 20331456642, 53249182309, 139449644717, 365166860706, 956185155129, 2503657040137
Offset: 3

Views

Author

Gheorghe Coserea, May 20 2015

Keywords

Comments

a(n) is the number of Dyck paths of length 2n and height 3. For example, a(3) = 1 because there is only one such Dyck path which is UUUDDD. - Ran Pan, Sep 26 2015
a(n) is the number of rooted plane trees with n+1 nodes and height 3 (see example for correspondence). - Gheorghe Coserea, Feb 04 2016

Examples

			For n=4, the a(4) = 5 solutions are
                /\       /\
               /  \        \
LRLLLRRR    /\/    \        \
................................
                /\        |
             /\/  \      / \
LLRLLRRR    /      \        \
................................
              /\/\        |
             /    \       |
LLLRLRRR    /      \     / \
................................
              /\          |
             /  \/\      / \
LLLRRLRR    /      \    /
................................
              /\          /\
             /  \        /
LLLRRRLR    /    \/\    /
		

References

  • S. S. Skiena and M. A. Revilla, Programming Challenges: The Programming Contest Training Manual, Springer, 2006, page 140.

Crossrefs

Column k=3 of A080936.
Column k=2 of A287213.

Programs

  • C
    typedef long long unsigned Integer;
    Integer a(int n)
    {
        int i;
        Integer pow2 = 1, a[3] = {0};
        for (i = 3; i <= n; ++i) {
            a[ i%3 ] = pow2 + 3 * a[ (i-1)%3 ] - a[ (i-2)%3 ];
            pow2 = pow2 * 2;
        }
        return a[ (i-1)%3 ];
    }
    
  • Magma
    I:=[1,5,18,57,169]; [n le 5 select I[n] else 5*Self(n-1) - 7*Self(n-2) + 2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 26 2015
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, 0,
          `if`(n=3, 1, 2^(n-3) +3*a(n-1) -a(n-2)))
        end:
    seq(a(n), n=3..30);  # Alois P. Heinz, May 20 2015
  • Mathematica
    Join[{1, 5}, LinearRecurrence[{5, -7, 2}, {18, 57, 169}, 30]] (* Vincenzo Librandi, Sep 26 2015 *)
  • PARI
    Vec(-x^3/((2*x-1)*(x^2-3*x+1)) + O(x^100)) \\ Colin Barker, May 24 2015
    
  • PARI
    a(n) = fibonacci(2*n-1) - 2^(n-1)  \\ Gheorghe Coserea, Feb 04 2016

Formula

a(n) = 2^(n-3) + 3 * a(n-1) - a(n-2).
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n>5. - Colin Barker, May 24 2015
G.f.: -x^3 / ((2*x-1)*(x^2-3*x+1)). - Colin Barker, May 24 2015
a(n) = A000045(2n-1) - A000079(n-1). - Gheorghe Coserea, Feb 04 2016
a(n) = 2^(-1-n)*(-5*4^n - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))) / 5. - Colin Barker, Jun 05 2017
a(n) = Sum_{i=1..n-1} A061667(i)*(n-1-i) - Tim C. Flowers, May 16 2018

A358724 Difference between the number of internal (non-leaf) nodes and the edge-height of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 1, 0, 1, 2, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 0, 2, 1, 0, 0, 2, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 3, 0, 1, 1, 2, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The tree (o(o)((o))(oo)) with Matula-Goebel number 210 has edge-height 3 and 5 internal nodes, so a(210) = 2.
		

Crossrefs

Positions of 0's are A209638, complement A358725.
Positions of 1's are A358576, counted by A358587.
Other differences: A358580, A358726, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],[_],{0,Infinity}]-(Depth[MGTree[n]]-2),{n,100}]

Formula

a(n) = A342507(n) - A109082(n).

A358726 Difference between the node-height and the number of leaves in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 1, -1, 1, 2, 4, 0, 2, 0, 2, -2, 2, 0, 0, 1, 0, 3, 2, -1, 2, 1, 0, -1, 3, 1, 5, -3, 3, 1, 1, -1, 1, -1, 1, 0, 3, -1, 1, 2, 1, 1, 3, -2, -1, 1, 1, 0, -1, -1, 3, -2, -1, 2, 3, 0, 1, 4, -1, -4, 1, 2, 1, 0, 1, 0, 2, -2, 1, 0, 1, -2, 2, 0, 4, -1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The tree (oo(oo(o))) with Matula-Goebel number 148 has node-height 4 and 5 leaves, so a(148) = -1.
		

Crossrefs

Positions of first appearances are A007097 and latter terms of A000079.
Positions of 0's are A358577.
Other differences: A358580, A358724, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[(Depth[MGTree[n]]-1)-Count[MGTree[n],{},{0,Infinity}],{n,1000}]

Formula

a(n) = A358552(n) - A109129(n).
Previous Showing 11-20 of 37 results. Next