A246876
G.f.: 1 / AGM(1-12*x, sqrt((1-4*x)*(1-36*x))).
Original entry on oeis.org
1, 16, 324, 7744, 206116, 5875776, 175191696, 5386385664, 169300977444, 5410164352576, 175128910042384, 5727842622630144, 188931648862083856, 6276176070222305536, 209747841324097564224, 7046053064278540084224, 237764385841359952067364, 8054915184317632144620096
Offset: 0
G.f.: A(x) = 1 + 16*x + 324*x^2 + 7744*x^3 + 206116*x^4 + 5875776*x^5 +...
where the square-root of the terms yields A081671:
[1, 4, 18, 88, 454, 2424, 13236, 73392, 411462, 2325976, ...]
the g.f. of which is 1/sqrt((1-2*x)*(1-6*x)).
-
{a(n)=polcoeff( 1 / agm(1-12*x, sqrt((1-4*x)*(1-36*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=sum(k=0,n,2^(n-k)*binomial(n,k)*binomial(2*k,k))^2}
for(n=0, 20, print1(a(n), ", "))
A329073
a(n) = (1/n)*Sum_{k=0..n-1} (40k+13)*(-1)^k*50^(n-1-k)*T_k(4,1)*T_k(1,-1)^2, where T_k(b,c) denotes the coefficient of x^k in the expansion of (x^2+b*x+c)^k.
Original entry on oeis.org
13, 219, 7858, 221525, 9253710, 375158958, 16882409364, 736344816813, 32964312771550, 1471835619627770, 66910145732699964, 3061043035494001682, 141458526138008430124, 6567714993530314856700, 306628434270114823521000, 14370411994543866356077725, 676259546148988495771751550
Offset: 1
a(1) = 13 since (40*0+13)*(-1)^0*50^(1-1-0)*T_0(4,1)*T_0(1,-1)^2/1 = 13/1 = 13.
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory: CANT 2011 and 2012, Springer Proc. in Math. & Stat., Vol. 101, Springer, New York, 2014, pp. 257-312. Also available from arXiv:1101.0600 [math.NT], 2011-2014.
-
T[b_,c_,0]=1;T[b_,c_,1]=b;
T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n;
a[n_]:=a[n]=Sum[(40k+13)(-1)^k*50^(n-1-k)*T[4,1,k]*T[1,-1,k]^2,{k,0,n-1}]/n;
Table[a[n],{n,1,20}]
A385728
Expansion of 1/((1-2*x) * (1-6*x))^(3/2).
Original entry on oeis.org
1, 12, 102, 760, 5310, 35784, 235788, 1530288, 9824310, 62557000, 395797908, 2491381776, 15616141996, 97537784400, 607391245080, 3772617319008, 23379854507046, 144605546475336, 892834113930180, 5504041611527760, 33883431379007364, 208327771987901808
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1 / ((1 - 2*x) * (1 - 6*x))^(3/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 22 2025
-
Module[{a, n}, RecurrenceTable[{a[n] == ((8*n+4)*a[n-1] - 12*(n+1)*a[n-2])/n, a[0] == 1, a[1] == 12}, a, {n, 0, 25}]] (* Paolo Xausa, Aug 21 2025 *)
CoefficientList[Series[ 1/((1-2*x)*(1-6*x))^(3/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 22 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/((1-2*x)*(1-6*x))^(3/2))
A307695
Expansion of 1/(sqrt(1-4*x)*sqrt(1-16*x)).
Original entry on oeis.org
1, 10, 118, 1540, 21286, 304300, 4443580, 65830600, 985483270, 14869654300, 225759595348, 3444812388280, 52781007848284, 811510465220920, 12513859077134008, 193460383702061200, 2997463389599395270, 46532910920993515900, 723626591914643806180, 11270311875128088314200
Offset: 0
Cf.
A000984 (c=0,d=4,e=1),
A026375 (c=1,d=5,e=1),
A081671 (c=2,d=6,e=1),
A098409 (c=3,d=7,e=1),
A098410 (c=4,d=8,e=1),
A104454 (c=5,d=9,e=1).
Cf.
A084605 (c=-3,d=5,e=2),
A098453 (c=-2,d=6,e=2),
A322242 (c=-1,d=7,e=2),
A084771 (c=1,d=9,e=2),
A248168 (c=3,d=11,e=2).
Cf.
A322246 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3).
-
a[n_] := Sum[4^(n-k) * 3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
-
N=66; x='x+O('x^N); Vec(1/sqrt(1-20*x+64*x^2))
-
{a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))}
-
{a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))}
A117852
Mirror image of A098473 formatted as a triangular array.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 18, 6, 1, 70, 80, 36, 8, 1, 252, 350, 200, 60, 10, 1, 924, 1512, 1050, 400, 90, 12, 1, 3432, 6468, 5292, 2450, 700, 126, 14, 1, 12870, 27456, 25872, 14112, 4900, 1120, 168, 16, 1, 48620, 115830, 123552, 77616, 31752, 8820, 1680, 216, 18, 1
Offset: 0
Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 18, 6, 1;
70, 80, 36, 8, 1;
252, 350, 200, 60, 10, 1;
...
-
c:=n->binomial(2*n, n): T:=proc(n, k) if k<=n then binomial(n, k)*c(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; #
-
Table[ Binomial[n, k]*Binomial[2*n - 2*k, n - k], {n,0,10}, {k,0,n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
A302181
Number of 3D walks of type abb.
Original entry on oeis.org
1, 5, 62, 1065, 21714, 492366, 12004740, 308559537, 8255788970, 227976044010, 6457854821340, 186814834574550, 5500292590186380, 164387681345290500, 4976887208815547640, 152378485941172462785, 4711642301137121933850, 146964278352052950118770, 4619875954522866283392300
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
C := n-> binomial(2*n, n)/(n+1): # Catalan numbers
A302181 := n-> add(binomial(2*n, k)*C(iquo(k+1, 2))*C(iquo(k, 2))*(2*iquo(k, 2)+1)*add((-1)^(k+j)*binomial(2*n-k, iquo(j,2)), j=0..2*n-k), k=0..2*n): seq(A302181(n), n = 0 .. 18); # Mélika Tebni, Nov 06 2024
A154627
Expansion of (1-5x)/(1-8x+4x^2).
Original entry on oeis.org
1, 3, 20, 148, 1104, 8240, 61504, 459072, 3426560, 25576192, 190903296, 1424921600, 10635759616, 79386390528, 592548085760, 4422839123968, 33012520648704, 246408808693760, 1839220386955264, 13728127860867072
Offset: 0
-
A[0]:= 1: A[1]:= 3:
for n from 2 to 100 do A[n]:= 8*A[n-1]-4*A[n-2] od:
seq(A[n],n=0..100); # Robert Israel, Aug 10 2014
-
LinearRecurrence[{8,-4},{1,3},20] (* Harvey P. Dale, Aug 10 2014 *)
CoefficientList[Series[(1 - 5 x)/(1 - 8 x + 4 x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 10 2014 *)
-
Vec((1-5*x)/(1-8*x+4*x^2)+O(x^50)) \\ Michel Marcus, Aug 10 2014
A272867
Triangle read by rows, T(n,k) = GegenbauerC(m,-n,-2) where m = k if k=0 and 0<=k<=2n.
Original entry on oeis.org
1, 1, 4, 1, 1, 8, 18, 8, 1, 1, 12, 51, 88, 51, 12, 1, 1, 16, 100, 304, 454, 304, 100, 16, 1, 1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1, 1, 24, 246, 1400, 4815, 10224, 13236, 10224, 4815, 1400, 246, 24, 1
Offset: 0
1;
1, 4, 1;
1, 8, 18, 8, 1;
1, 12, 51, 88, 51, 12, 1;
1, 16, 100, 304, 454, 304, 100, 16, 1;
1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1;
1, 24, 246, 1400, 4815, 10224, 13236, 10224, 4815, 1400, 246, 24, 1;
-
T := (n,k) -> simplify(GegenbauerC(`if`(k
-
T[n_, k_]:=If[n<1, 1, If[kIndranil Ghosh, Apr 03 2017 *)
A293491
a(n) = n! * [x^n] exp((n+2)*x)*BesselI(0,2*x).
Original entry on oeis.org
1, 3, 18, 155, 1734, 23877, 390804, 7417377, 160256070, 3885021569, 104465601756, 3086353547433, 99399100528924, 3466411543407555, 130151205663179112, 5235127829223881895, 224609180728848273990, 10239557195235638377449, 494317596005491398892620, 25192788307121307053168673
Offset: 0
-
Table[n! SeriesCoefficient[Exp[(n + 2) x] BesselI[0, 2 x], {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[1/Sqrt[(1 - n x) (1 - (n + 4) x)], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[Binomial[n, k] Binomial[2 k, k] n^(n - k), {k, 0, n}], {n, 1, 19}]]
Table[(n + 2)^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {1}, 4/(2 + n)^2], {n, 0, 19}]
A302180
Number of 3D walks of type aad.
Original entry on oeis.org
1, 1, 3, 7, 23, 71, 251, 883, 3305, 12505, 48895, 193755, 783355, 3205931, 13302329, 55764413, 236174933, 1008773269, 4343533967, 18834033443, 82201462251, 360883031291, 1592993944723, 7066748314147, 31493800133173, 140953938878821, 633354801073571, 2856369029213263
Offset: 0
Cf.
A000108,
A000984,
A001006,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
M := n-> add(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. iquo(n,2)): # Motzkin numbers
A302180 := n-> add((-1)^(n-k)*binomial(n, k)*add(binomial(k, j)*M(j)*M(k-j), j=0..k), k=0..n): seq(A302180(n), n = 0 .. 26); # Mélika Tebni, Nov 05 2024
Comments