cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A246876 G.f.: 1 / AGM(1-12*x, sqrt((1-4*x)*(1-36*x))).

Original entry on oeis.org

1, 16, 324, 7744, 206116, 5875776, 175191696, 5386385664, 169300977444, 5410164352576, 175128910042384, 5727842622630144, 188931648862083856, 6276176070222305536, 209747841324097564224, 7046053064278540084224, 237764385841359952067364, 8054915184317632144620096
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2014

Keywords

Comments

In general, the g.f. of the squares of coefficients in g.f. 1/sqrt((1-p*x)*(1-q*x)) is given by
1/AGM(1-p*q*x, sqrt((1-p^2*x)*(1-q^2*x))) = Sum_{n>=0} x^n*[Sum_{k=0..n} p^(n-k)*((q-p)/4)^k*C(n,k)*C(2*k,k)]^2,
and consists of integer coefficients when 4|(q-p).
Here AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.

Examples

			G.f.: A(x) = 1 + 16*x + 324*x^2 + 7744*x^3 + 206116*x^4 + 5875776*x^5 +...
where the square-root of the terms yields A081671:
[1, 4, 18, 88, 454, 2424, 13236, 73392, 411462, 2325976, ...]
the g.f. of which is 1/sqrt((1-2*x)*(1-6*x)).
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( 1 / agm(1-12*x, sqrt((1-4*x)*(1-36*x) +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n,2^(n-k)*binomial(n,k)*binomial(2*k,k))^2}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = A081671(n)^2 = [Sum_{k=0..n} 2^(n-k) * C(n,k) * C(2*k,k)]^2.
G.f.: 1 / AGM((1-2*x)*(1+6*x), (1+2*x)*(1-6*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) ~ 2^(2*n - 1) * 3^(2*n + 1) / (Pi*n). - Vaclav Kotesovec, Dec 10 2018

A329073 a(n) = (1/n)*Sum_{k=0..n-1} (40k+13)*(-1)^k*50^(n-1-k)*T_k(4,1)*T_k(1,-1)^2, where T_k(b,c) denotes the coefficient of x^k in the expansion of (x^2+b*x+c)^k.

Original entry on oeis.org

13, 219, 7858, 221525, 9253710, 375158958, 16882409364, 736344816813, 32964312771550, 1471835619627770, 66910145732699964, 3061043035494001682, 141458526138008430124, 6567714993530314856700, 306628434270114823521000, 14370411994543866356077725, 676259546148988495771751550
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 03 2019

Keywords

Comments

Conjecture 1: (i) a(n) is a positive integer for each n > 0; also, a(n) is odd if and only if n is a power of two. Moreover, we have the identity Sum_{k>=0} ((40k+13)/(-50)^k)*T_k(4,1)*T_k(1,-1)^2 = 55*sqrt(15)/(9*Pi).
(ii) Let p > 5 be a prime. Then Sum_{k=0..p-1} ((40k+13)/(-50)^k)*T_k(4,1)* T_k(1,-1)^2 == (p/3)*(12 + 5*Leg(3/p) + 22*Leg(p/15)) (mod p^2), where Leg(a/p) denotes the Legendre symbol. Also, for the sum S(p) = Sum_{k=0..p-1} T_k(4,1)* T_k(1,-1)^2/(-50)^k, if Leg(-5/p) = -1 then S(p) == 0 (mod p^2); if p == 1,9 (mod 20) and p = x^2 + 5*y^2 with x and y integers then S(p) == 4x^2-2p (mod p^2); if p == 3,7 (mod 20) and 2p = x^2 + 5*y^2 with x and y integers then S(p) == 2x^2-2p (mod p^2).
Conjecture 2: (i) For any n > 0, the number b(n):=(1/n)*Sum_{k=0..n-1} (40k+27)*(-6)^(n-1-k)*T_k(4,1)*T_k(1,-1)^2 is an integer. Moreover, b(n) is odd if and only if n is a power of two.
(ii) Let p > 3 be a prime. Then Sum_{k=0..p-1} ((40k+27)/(-6)^k)*T_k(4,1)* T_k(1,-1)^2 == (p/9)*(55*Leg(-5/p) + 198*Leg(3/p)-10) (mod p^2). Also, for the sum T(p) = Sum_{k=0..p-1} T_k(4,1)*T_k(1,-1)^2/(-6)^k, if Leg(-5/p) = -1 then T(p) == 0 (mod p^2); if p == 1,9 (mod 20) and p = x^2 + 5*y^2 with x and y integers then T(p) == Leg(p/3)*(4x^2-2p) (mod p^2); if p == 3,7 (mod 20) and 2p = x^2 + 5*y^2 with x and y integers then T(p) == Leg(p/3)(2p-2x^2) (mod p^2).

Examples

			a(1) = 13 since (40*0+13)*(-1)^0*50^(1-1-0)*T_0(4,1)*T_0(1,-1)^2/1 = 13/1 = 13.
		

Crossrefs

Programs

  • Mathematica
    T[b_,c_,0]=1;T[b_,c_,1]=b;
    T[b_,c_,n_]:=T[b,c,n]=(b(2n-1)T[b,c,n-1]-(b^2-4c)(n-1)T[b,c,n-2])/n;
    a[n_]:=a[n]=Sum[(40k+13)(-1)^k*50^(n-1-k)*T[4,1,k]*T[1,-1,k]^2,{k,0,n-1}]/n;
    Table[a[n],{n,1,20}]

A385728 Expansion of 1/((1-2*x) * (1-6*x))^(3/2).

Original entry on oeis.org

1, 12, 102, 760, 5310, 35784, 235788, 1530288, 9824310, 62557000, 395797908, 2491381776, 15616141996, 97537784400, 607391245080, 3772617319008, 23379854507046, 144605546475336, 892834113930180, 5504041611527760, 33883431379007364, 208327771987901808
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1 / ((1 - 2*x) * (1 - 6*x))^(3/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 22 2025
  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n] == ((8*n+4)*a[n-1] - 12*(n+1)*a[n-2])/n, a[0] == 1, a[1] == 12}, a, {n, 0, 25}]] (* Paolo Xausa, Aug 21 2025 *)
    CoefficientList[Series[ 1/((1-2*x)*(1-6*x))^(3/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 22 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-2*x)*(1-6*x))^(3/2))
    

Formula

n*a(n) = (8*n+4)*a(n-1) - 12*(n+1)*a(n-2) for n > 1.
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * (2*k+1) * (2*(n-k)+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} 2^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = binomial(n+2,2) * A005572(n).
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} 2^k * (-3/2)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k).
a(n) ~ sqrt(n) * 2^(n - 1/2) * 3^(n + 3/2) / sqrt(Pi). - Vaclav Kotesovec, Aug 21 2025

A307695 Expansion of 1/(sqrt(1-4*x)*sqrt(1-16*x)).

Original entry on oeis.org

1, 10, 118, 1540, 21286, 304300, 4443580, 65830600, 985483270, 14869654300, 225759595348, 3444812388280, 52781007848284, 811510465220920, 12513859077134008, 193460383702061200, 2997463389599395270, 46532910920993515900, 723626591914643806180, 11270311875128088314200
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2019

Keywords

Comments

Let 1/(sqrt(1-c*x)*sqrt(1-d*x)) = Sum_{k>=0} b(k)*x^k.
b(n) = Sum_{k=0..n} c^(n-k) * e^k * binomial(n,k) * binomial(2*k,k) = Sum_{k=0..n} d^(n-k) * (-e)^k * binomial(n,k) * binomial(2*k,k), where e = (d-c)/4.
n*b(n) = (c+d)/2 * (2*n-1) * b(n-1) - c * d * (n-1) * b(n-2) for n > 1.

Crossrefs

Cf. A000984 (c=0,d=4,e=1), A026375 (c=1,d=5,e=1), A081671 (c=2,d=6,e=1), A098409 (c=3,d=7,e=1), A098410 (c=4,d=8,e=1), A104454 (c=5,d=9,e=1).
Cf. A084605 (c=-3,d=5,e=2), A098453 (c=-2,d=6,e=2), A322242 (c=-1,d=7,e=2), A084771 (c=1,d=9,e=2), A248168 (c=3,d=11,e=2).
Cf. A322246 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3).
Cf. A322244 (c=-5,d=11,e=4), A322248 (c=-3,d=13,e=4).

Programs

  • Mathematica
    a[n_] := Sum[4^(n-k) * 3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/sqrt(1-20*x+64*x^2))
    
  • PARI
    {a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))}
    
  • PARI
    {a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))}

Formula

a(n) = Sum_{k=0..n} 4^(n-k)*3^k*binomial(n,k)*binomial(2k,k).
a(n) = Sum_{k=0..n} 16^(n-k)*(-3)^k*binomial(n,k)*binomial(2k,k).
D-finite with recurrence: n*a(n) = 10*(2*n-1)*a(n-1) - 64*(n-1)*a(n-2) for n > 1.
a(n) ~ 2^(4*n+1) / sqrt(3*Pi*n). - Vaclav Kotesovec, Apr 30 2019

A117852 Mirror image of A098473 formatted as a triangular array.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 18, 6, 1, 70, 80, 36, 8, 1, 252, 350, 200, 60, 10, 1, 924, 1512, 1050, 400, 90, 12, 1, 3432, 6468, 5292, 2450, 700, 126, 14, 1, 12870, 27456, 25872, 14112, 4900, 1120, 168, 16, 1, 48620, 115830, 123552, 77616, 31752, 8820, 1680, 216, 18, 1
Offset: 0

Views

Author

Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006

Keywords

Examples

			Triangle begins:
    1;
    2,   1;
    6,   4,   1;
   20,  18,   6,   1;
   70,  80,  36,   8,   1;
  252, 350, 200,  60,  10,   1;
  ...
		

Crossrefs

Cf. A098473.

Programs

  • Maple
    c:=n->binomial(2*n, n): T:=proc(n, k) if k<=n then binomial(n, k)*c(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; #
  • Mathematica
    Table[ Binomial[n, k]*Binomial[2*n - 2*k, n - k], {n,0,10}, {k,0,n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Sep 28 2007
T(n,k) = binomial(n,k)*A000984(n-k). - Philippe Deléham, Dec 12 2009
O.g.f.: 1/sqrt( (1 - x*t)*(1 - (x + 4)*t) ) = 1 + (2 + x)*t + (6 + 4*x + x^2)*t^2 + .... - Peter Bala, Nov 10 2013

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 12 2007

A302181 Number of 3D walks of type abb.

Original entry on oeis.org

1, 5, 62, 1065, 21714, 492366, 12004740, 308559537, 8255788970, 227976044010, 6457854821340, 186814834574550, 5500292590186380, 164387681345290500, 4976887208815547640, 152378485941172462785, 4711642301137121933850, 146964278352052950118770, 4619875954522866283392300
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    C := n-> binomial(2*n, n)/(n+1): # Catalan numbers
    A302181 := n-> add(binomial(2*n, k)*C(iquo(k+1, 2))*C(iquo(k, 2))*(2*iquo(k, 2)+1)*add((-1)^(k+j)*binomial(2*n-k, iquo(j,2)), j=0..2*n-k), k=0..2*n): seq(A302181(n), n = 0 .. 18); # Mélika Tebni, Nov 06 2024

Formula

a(n) = Sum_{k=0..2*n} binomial(2*n, k) * A005558(k) * A126869(2*n-k). - Mélika Tebni, Nov 06 2024

Extensions

a(8)-a(18) from Nachum Dershowitz, Aug 03 2020

A154627 Expansion of (1-5x)/(1-8x+4x^2).

Original entry on oeis.org

1, 3, 20, 148, 1104, 8240, 61504, 459072, 3426560, 25576192, 190903296, 1424921600, 10635759616, 79386390528, 592548085760, 4422839123968, 33012520648704, 246408808693760, 1839220386955264, 13728127860867072
Offset: 0

Views

Author

Paul Barry, Jan 13 2009

Keywords

Comments

Hankel transform of 1,1,4,18,88,.... (see A081671).

Programs

  • Maple
    A[0]:= 1: A[1]:= 3:
    for n from 2 to 100 do A[n]:= 8*A[n-1]-4*A[n-2] od:
    seq(A[n],n=0..100); # Robert Israel, Aug 10 2014
  • Mathematica
    LinearRecurrence[{8,-4},{1,3},20] (* Harvey P. Dale, Aug 10 2014 *)
    CoefficientList[Series[(1 - 5 x)/(1 - 8 x + 4 x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 10 2014 *)
  • PARI
    Vec((1-5*x)/(1-8*x+4*x^2)+O(x^50)) \\ Michel Marcus, Aug 10 2014

Formula

a(n) = 8*a(n-1) - 4*a(n-2), n > 1; a(0)=1, a(1)=3. [Philippe Deléham, Feb 02 2009]

A272867 Triangle read by rows, T(n,k) = GegenbauerC(m,-n,-2) where m = k if k=0 and 0<=k<=2n.

Original entry on oeis.org

1, 1, 4, 1, 1, 8, 18, 8, 1, 1, 12, 51, 88, 51, 12, 1, 1, 16, 100, 304, 454, 304, 100, 16, 1, 1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1, 1, 24, 246, 1400, 4815, 10224, 13236, 10224, 4815, 1400, 246, 24, 1
Offset: 0

Views

Author

Peter Luschny, May 08 2016

Keywords

Examples

			                                  1;
                            1,    4,  1;
                         1, 8,   18,  8, 1;
                    1, 12, 51,   88,  51, 12, 1;
              1, 16, 100, 304,  454,  304, 100, 16, 1;
        1, 20, 165, 720, 1770, 2424,  1770, 720, 165, 20, 1;
1, 24, 246, 1400, 4815, 10224, 13236, 10224, 4815, 1400, 246, 24, 1;
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> simplify(GegenbauerC(`if`(k
    				
  • Mathematica
    T[n_, k_]:=If[n<1, 1, If[kIndranil Ghosh, Apr 03 2017 *)

Formula

T(n,n) = A081671(n) for n>=0.
T(n+1,n+2)/(n+1) = A005572(n) for n>=0.

A293491 a(n) = n! * [x^n] exp((n+2)*x)*BesselI(0,2*x).

Original entry on oeis.org

1, 3, 18, 155, 1734, 23877, 390804, 7417377, 160256070, 3885021569, 104465601756, 3086353547433, 99399100528924, 3466411543407555, 130151205663179112, 5235127829223881895, 224609180728848273990, 10239557195235638377449, 494317596005491398892620, 25192788307121307053168673
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 10 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A000984.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[(n + 2) x] BesselI[0, 2 x], {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[1/Sqrt[(1 - n x) (1 - (n + 4) x)], {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[2 k, k] n^(n - k), {k, 0, n}], {n, 1, 19}]]
    Table[(n + 2)^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {1}, 4/(2 + n)^2], {n, 0, 19}]

Formula

a(n) = [x^n] 1/sqrt((1 - n*x)*(1 - (n + 4)*x)).
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)*n^(n-k).
a(n) ~ exp(2) * BesselI(0,2) * n^n. - Vaclav Kotesovec, Oct 16 2017

A302180 Number of 3D walks of type aad.

Original entry on oeis.org

1, 1, 3, 7, 23, 71, 251, 883, 3305, 12505, 48895, 193755, 783355, 3205931, 13302329, 55764413, 236174933, 1008773269, 4343533967, 18834033443, 82201462251, 360883031291, 1592993944723, 7066748314147, 31493800133173, 140953938878821, 633354801073571, 2856369029213263
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.
Number of 3D walks of length n in the first octant using steps (1, 1, 0), (1, -1, 0), (1, 0, 1), (1, 0, -1) and (1, 0, 0) that start at the origin and end at (n, 0, 0). The analogous problem in 2D is given by the Motzkin numbers A001006. - Farzan Byramji, Mar 06 2021
Inverse binomial transform of A145867 (Number of 3D walks of type aae). - Mélika Tebni, Nov 05 2024

Crossrefs

Programs

  • Maple
    M := n-> add(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. iquo(n,2)): # Motzkin numbers
    A302180 := n-> add((-1)^(n-k)*binomial(n, k)*add(binomial(k, j)*M(j)*M(k-j), j=0..k), k=0..n):  seq(A302180(n), n = 0 .. 26); # Mélika Tebni, Nov 05 2024

Extensions

a(14)-a(26) from Farzan Byramji, Mar 06 2021
Previous Showing 11-20 of 30 results. Next