A345987 Decimal expansion of constant mu(ell) arising in study of complexity of Euclidean algorithm.
1, 8, 9, 9, 1, 9, 3, 2, 4, 3, 9, 1, 0, 8, 8, 0, 6, 7, 9, 4, 4, 8, 2, 8, 3, 2, 0, 6, 9, 8, 1, 2, 5, 1, 2, 0, 7, 9, 1, 9, 9, 4, 8, 2, 7, 1, 0, 0, 9, 0, 6, 9, 9, 2, 1, 9, 8, 0, 6, 9, 2, 1, 4, 7, 9, 7, 2, 7, 8, 8, 9, 0, 9, 6, 5, 6, 8, 1, 4, 2, 8, 6, 6, 9, 5, 6, 1, 8, 8, 1, 1, 3, 1, 4, 1, 6, 3, 3, 7, 5, 5, 5, 5, 6
Offset: 1
Examples
1.89919324391088067944828320698125120791994827100906...
References
- Lhote, Loïck, and Brigitte Vallée. "Sharp estimates for the main parameters of the Euclid Algorithm." In Latin American Symposium on Theoretical Informatics, pp. 689-702. Springer, Berlin, Heidelberg, 2006.
Crossrefs
Cf. A081845.
Programs
-
Maple
evalf(12/Pi^2*log(product(1+1/2^i, i=0..infinity)), 120); # Alois P. Heinz, Jul 12 2021
-
Mathematica
RealDigits[(12/Pi^2)*Log[Product[1 + 1/2^i, {i, 0, Infinity}]], 10, 105][[1]] (* Amiram Eldar, Jul 12 2021 *)
Formula
Equals 12*log(QPochhammer(-1,1/2))/Pi^2. - Stefano Spezia, Jul 12 2021
Comments