cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A345987 Decimal expansion of constant mu(ell) arising in study of complexity of Euclidean algorithm.

Original entry on oeis.org

1, 8, 9, 9, 1, 9, 3, 2, 4, 3, 9, 1, 0, 8, 8, 0, 6, 7, 9, 4, 4, 8, 2, 8, 3, 2, 0, 6, 9, 8, 1, 2, 5, 1, 2, 0, 7, 9, 1, 9, 9, 4, 8, 2, 7, 1, 0, 0, 9, 0, 6, 9, 9, 2, 1, 9, 8, 0, 6, 9, 2, 1, 4, 7, 9, 7, 2, 7, 8, 8, 9, 0, 9, 6, 5, 6, 8, 1, 4, 2, 8, 6, 6, 9, 5, 6, 1, 8, 8, 1, 1, 3, 1, 4, 1, 6, 3, 3, 7, 5, 5, 5, 5, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2021

Keywords

Comments

The constant is (12/Pi^2)*log(Product_{i>=0} (1+1/2^i)).

Examples

			1.89919324391088067944828320698125120791994827100906...
		

References

  • Lhote, Loïck, and Brigitte Vallée. "Sharp estimates for the main parameters of the Euclid Algorithm." In Latin American Symposium on Theoretical Informatics, pp. 689-702. Springer, Berlin, Heidelberg, 2006.

Crossrefs

Cf. A081845.

Programs

  • Maple
    evalf(12/Pi^2*log(product(1+1/2^i, i=0..infinity)), 120);  # Alois P. Heinz, Jul 12 2021
  • Mathematica
    RealDigits[(12/Pi^2)*Log[Product[1 + 1/2^i, {i, 0, Infinity}]], 10, 105][[1]] (* Amiram Eldar, Jul 12 2021 *)

Formula

Equals 12*log(QPochhammer(-1,1/2))/Pi^2. - Stefano Spezia, Jul 12 2021

A371748 Decimal expansion of Product_{k>=0} (1 + 1/4^k).

Original entry on oeis.org

2, 7, 1, 1, 8, 1, 9, 3, 4, 7, 7, 2, 6, 9, 5, 8, 7, 6, 0, 6, 9, 1, 0, 8, 8, 4, 6, 9, 7, 0, 7, 9, 1, 8, 6, 0, 2, 4, 4, 3, 3, 9, 9, 0, 8, 5, 6, 7, 4, 8, 8, 5, 4, 9, 4, 6, 9, 3, 0, 8, 0, 6, 2, 9, 0, 0, 6, 0, 2, 6, 2, 3, 6, 1, 3, 0, 5, 9, 7, 7, 8, 0, 0, 9, 7, 8, 7, 7, 4, 0, 5, 2, 5, 2, 1, 4, 6, 0, 4, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			2.71181934772695876069108846970791860244...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, 1/4], 10, 100][[1]]

Formula

Equals A065445^2. - Hugo Pfoertner, Apr 05 2024

A371751 Decimal expansion of Product_{k>=0} (1 + 1/5^k).

Original entry on oeis.org

2, 5, 2, 1, 0, 0, 1, 6, 1, 3, 4, 2, 0, 2, 1, 5, 0, 6, 4, 7, 7, 7, 7, 4, 6, 3, 1, 5, 4, 7, 8, 2, 1, 3, 0, 1, 3, 2, 0, 6, 8, 1, 8, 9, 7, 8, 0, 9, 1, 3, 2, 6, 4, 2, 6, 3, 1, 2, 2, 1, 7, 1, 3, 9, 5, 6, 2, 7, 2, 1, 0, 0, 5, 0, 8, 7, 0, 5, 0, 0, 1, 9, 7, 2, 7, 6, 2, 8, 0, 6, 6, 3, 3, 4, 7, 7, 9, 9, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			2.5210016134202150647777463154782130132...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, 1/5], 10, 100][[1]]
    RealDigits[Times@@Table[1+1/5^k,{k,0,1000}],10,100][[1]] (* Harvey P. Dale, Sep 17 2024 *)

A005477 a(n) = 2^(n-1)*(2^n - 1)*Product_{j=1..n-1} (2^j + 1).

Original entry on oeis.org

0, 1, 18, 420, 16200, 1138320, 152681760, 40012315200, 20727639504000, 21349793828563200, 43852643645542617600, 179883715700853141120000, 1474687052822610564537600000, 24170122236238340825650936320000, 792151597973733707815459821941760000, 51919200227802645600849976559054284800000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A081845.

Programs

  • Magma
    [n le 1 select n else 2^(n-1)*(2^n -1)*(&*[2^j+1: j in [1..n-1]]): n in [0..25]]; // G. C. Greubel, Nov 25 2022
    
  • Maple
    f := i->2^(i-1)*(2^i-1)*product( '2^j+1','j'=1..i-1);
  • Mathematica
    Table[2^(n-1) (2^n-1)Product[2^j+1,{j,n-1}],{n,0,20}] (* Harvey P. Dale, Feb 02 2022 *)
    Table[2^(n-2)*(2^n-1)*QPochhammer[-1,2,n], {n,0,30}] (* G. C. Greubel, Nov 25 2022 *)
  • SageMath
    def A005477(n): return 2^(n-2)*(2^n-1)*product(2^j+1 for j in range(n))
    [A005477(n) for n in range(30)] # G. C. Greubel, Nov 25 2022

Formula

a(n) = 2^(n-2)*(2^n - 1)*QPochhammer(n, -1, 2). - G. C. Greubel, Nov 25 2022
a(n) ~ c * 2^((n^2+3*n-4)/2), where c = Product_{k>=0} (1 + 1/2^k) = A081845. - Amiram Eldar, Aug 18 2025

Extensions

a(0) prepended by G. C. Greubel, Nov 25 2022

A330863 Decimal expansion of Product_{k>=1} (1 + 1/(-2)^k).

Original entry on oeis.org

5, 6, 8, 6, 9, 8, 9, 4, 6, 2, 6, 5, 4, 2, 8, 5, 0, 5, 9, 5, 4, 9, 7, 6, 7, 3, 7, 0, 7, 4, 4, 4, 4, 6, 5, 4, 2, 9, 0, 8, 5, 2, 4, 5, 1, 3, 8, 9, 3, 5, 9, 0, 2, 9, 3, 1, 9, 3, 4, 4, 0, 4, 6, 0, 1, 8, 3, 5, 3, 5, 6, 3, 2, 3, 0, 9, 1, 2, 6, 4, 0, 9, 6, 1, 4, 6, 4, 4, 1, 1, 7, 3, 0, 6, 1, 4, 8, 6, 0, 4, 8, 0, 2, 7, 2, 6, 9, 4, 1, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 - 1/2) * (1 + 1/2^2) * (1 - 1/2^3) * (1 + 1/2^4) * (1 - 1/2^5) * ... = 0.568698946265428505954976737...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, -1/2]/2, 10, 110] [[1]]
    N[3/QPochhammer[-2, 1/4], 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 + 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} 1/(1 + 1/2^(2*k-1)).
Equals exp(Sum_{k>=1} A000593(k)/(k*(-2)^k)).
From Peter Bala, Dec 15 2020: (Start)
Constant C = (2/3) - (1/3)*Sum_{n >= 0} (-1)^n * 2^(n^2)/( Product_{k = 1..n+1} 4^k - 1 ).
C = Sum_{n >= 0} 1/( Product_{k = 1..n} (-2)^k - 1 ) = 1 - 1/3 - 1/9 + 1/81 + 1/1215 - - + + ... = Sum_{n >= 0} 1/A216206(n).
C = 1 + Sum_{n >= 0} (-1/2)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
3*C = 2 - Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
9*C = 5 - Sum_{n >= 0} (-1/8)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
81*C = 46 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
1215*C = 691 + Sum_{n >= 0} (-1/32)^(n+1)*Product_{k = 1..n} (1 + (-1/2)^k).
The sequence [1, 2, 5, 46, 691, ...] is the sequence of numerators of the partial sums of the series Sum_{n >= 0} 1/A216206(n). (End)

A174608 Decimal expansion of (1/log(2))*Sum_{k>=0} log(1+1/2^k) = 2.253...

Original entry on oeis.org

2, 2, 5, 3, 5, 2, 4, 0, 3, 7, 9, 3, 4, 6, 9, 9, 6, 5, 9, 1, 2, 5, 5, 6, 1, 4, 5, 0, 3, 3, 4, 7, 8, 4, 6, 9, 7, 5, 4, 4, 8, 7, 3, 7, 4, 1, 1, 4, 2, 2, 6, 8, 5, 0, 6, 2, 1, 0, 4, 7, 9, 7, 7, 4, 9, 5, 5, 6, 5, 6, 8, 3, 8, 8, 0, 8, 2, 7, 1, 2, 3, 4, 8, 6, 1, 4, 7, 9, 3, 1, 6, 6, 1, 8, 8, 0, 0, 2, 9, 8, 6, 7, 2, 0, 7
Offset: 1

Views

Author

Benoit Cloitre, Mar 23 2010

Keywords

Crossrefs

Programs

  • Mathematica
    digits = 105; 1/Log[2]*NSum[Log[1 + 1/2^k], {k, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> 70] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)

Formula

Equals log(A081845)/A002162. - R. J. Mathar, Apr 20 2010
Previous Showing 11-16 of 16 results.