cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A112526 Characteristic function for powerful numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

A signed multiplicative variant is defined by b(n) = a(n)*mu(n) with mu = A008683, such that b(p^e)=0 if e=1 and b(p^e)= -1 if e>1. This has Dirichlet series Sum_{n>=1} b(n)/n = A005596 and Sum_{n>=1} b(n)/n^2 = A065471. - R. J. Mathar, Apr 04 2011

Examples

			a(72) = 1 because 72 = 2^3*3^2 has all exponents > 1.
		

Crossrefs

Differs from characteristic function of perfect powers A075802 at Achilles numbers A052486.
Cf. A001694 (powerful numbers), A124010, A001221, A027746.

Programs

  • Haskell
    a112526 1 = 1
    a112526 n = fromEnum $ (> 1) $ minimum $ a124010_row n
    -- Reinhard Zumkeller, Jun 03 2015, Sep 16 2011
    
  • Mathematica
    cfpn[n_]:=If[n==1||Min[Transpose[FactorInteger[n]][[2]]]>1,1,0]; Array[ cfpn,120] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X^3)/(1-X^2))[n], ", ")) \\ Vaclav Kotesovec, Jul 15 2022
    
  • PARI
    a(n) = ispowerful(n); \\ Amiram Eldar, Jul 02 2025
    
  • Python
    from sympy import factorint
    def A112526(n): return int(all(e>1 for e in factorint(n).values())) # Chai Wah Wu, Sep 15 2024

Formula

Multiplicative with a(p^e) = 1 - 0^(e-1), e > 0 and p prime.
Dirichlet g.f.: zeta(2*s)*zeta(3*s)/zeta(6*s), e.g., A082695 at s=1.
a(n) * A008966(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = {m: Min{A124010(m,k): k=1..A001221(m)} > 1}. - Reinhard Zumkeller, Jun 03 2015
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)/zeta(3) + 6*zeta(2/3)*n^(1/3)/Pi^2. - Vaclav Kotesovec, Feb 08 2019
a(n) = Sum_{d|n} A005361(d)*A008683(n/d). - Ridouane Oudra, Jul 03 2025

A052486 Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power.

Original entry on oeis.org

72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000, 5292, 5324, 5400, 5408, 5488, 6075
Offset: 1

Views

Author

Henry Bottomley, Mar 16 2000

Keywords

Comments

Number of terms < 10^n: 0, 1, 13, 60, 252, 916, 3158, 10553, 34561, 111891, 359340, 1148195, 3656246, 11616582, 36851965, ..., A118896(n) - A070428(n). - Robert G. Wilson v, Aug 11 2014
a(n) = (s(n))^2 * f(n), s(n) > 1, f(n) > 1, where s(n) is not a power of f(n), and f(n) is squarefree and gcd(s(n), f(n)) = f(n). - Daniel Forgues, Aug 11 2015

Examples

			a(3)=200 because 200=2^3*5^2, both 3 and 2 are greater than 1, and the highest common factor of 3 and 2 is 1.
Factorizations of a(1) to a(20):
    72 = 2^3  3^2,  108 = 2^2 3^3,  200 = 2^3 5^2,  288 = 2^5  3^2,
   392 = 2^3  7^2,  432 = 2^4 3^3,  500 = 2^2 5^3,  648 = 2^3  3^4,
   675 = 3^3  5^2,  800 = 2^5 5^2,  864 = 2^5 3^3,  968 = 2^3 11^2,
   972 = 2^2  3^5, 1125 = 3^2 5^3, 1152 = 2^7 3^2, 1323 = 3^3  7^2,
  1352 = 2^3 13^2, 1372 = 2^2 7^3, 1568 = 2^5 7^2, 1800 = 2^3  3^2 5^2.
Examples for a(n) = (s(n))^2 * f(n): (see above comment)
s(n) = 6,  6, 10, 12, 14, 12, 10, 18, 15, 20, 12, 22, 18, 15, 24, 21,
f(n) = 2,  3,  2,  2,  2,  3,  5,  2,  3,  2,  6,  2,  3,  5,  2,  3,
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
    select(filter,[$1..10000]); # Robert Israel, Aug 11 2014
  • Mathematica
    achillesQ[n_] := Block[{ls = Last /@ FactorInteger@n}, Min@ ls > 1 == GCD @@ ls]; Select[ Range@ 5500, achillesQ@# &] (* Robert G. Wilson v, Jun 10 2010 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && vecmin(f)>1 && gcd(f)==1 \\ Charles R Greathouse IV, Sep 18 2015, replacing code by M. F. Hasler, Sep 23 2010
    
  • Python
    from math import gcd
    from itertools import count, islice
    from sympy import factorint
    def A052486_gen(startvalue=1): # generator of terms >= startvalue
        return (n for n in count(max(startvalue,1)) if (lambda x: all(e > 1 for e in x) and gcd(*x) == 1)(factorint(n).values()))
    A052486_list = list(islice(A052486_gen(),20)) # Chai Wah Wu, Feb 19 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A052486(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x+1, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = O(n^2). - Daniel Forgues, Aug 11 2015
a(n) = O(n^2 / log log n). - Daniel Forgues, Aug 12 2015
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} mu(k)*(1-zeta(k)) - 1 = A082695 - A072102 - 1 = 0.06913206841581433836... - Amiram Eldar, Oct 14 2020

Extensions

Example edited by Mac Coombe (mac.coombe(AT)gmail.com), Sep 18 2010
Name edited by M. F. Hasler, Jul 17 2019

A109395 Denominator of phi(n)/n = Product_{p|n} (1 - 1/p); phi(n)=A000010(n), the Euler totient function.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 2, 33, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 11, 7, 19, 29, 59, 15, 61, 31, 7, 2, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, 15, 19, 77, 13, 79, 5, 3
Offset: 1

Views

Author

Franz Vrabec, Aug 26 2005

Keywords

Comments

a(n)=2 iff n=2^k (k>0); otherwise a(n) is odd. If p is prime, a(p)=p; the converse is false, e.g.: a(15)=15. It is remarkable that this sequence often coincides with A006530, the largest prime P dividing n. Theorem: a(n)=P if and only if for every prime p < P in n there is some prime q in n with p|(q-1). - Franz Vrabec, Aug 30 2005

Examples

			a(10) = 10/gcd(10,phi(10)) = 10/gcd(10,4) = 10/2 = 5.
		

Crossrefs

Cf. A076512 for the numerator.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

Formula

a(n) = n/gcd(n, phi(n)) = n/A009195(n).
From Antti Karttunen, Feb 09 2019: (Start)
a(n) = denominator of A173557(n)/A007947(n).
a(2^n) = 2 for all n >= 1.
(End)
From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean of phi(n)/n: lim_{m->oo} (1/m) * Sum_{n=1..m} A076512(n)/a(n) = 6/Pi^2 (A059956).
Asymptotic mean of n/phi(n): lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A076512(n) = zeta(2)*zeta(3)/zeta(6) (A082695). (End)

A272030 Decimal expansion of C = log(2*Pi) + B_3 (where B_3 is A083343), one of Euler totient constants.

Original entry on oeis.org

3, 1, 7, 0, 4, 5, 9, 3, 4, 2, 1, 4, 2, 5, 6, 6, 3, 6, 5, 3, 2, 6, 4, 8, 8, 2, 4, 8, 8, 8, 2, 2, 6, 3, 0, 2, 8, 5, 6, 1, 2, 5, 4, 4, 3, 6, 3, 1, 7, 9, 8, 9, 4, 8, 7, 4, 2, 1, 4, 3, 3, 9, 8, 0, 7, 2, 2, 8, 7, 1, 4, 3, 3, 5, 7, 3, 8, 2, 4, 8, 1, 4, 0, 7, 7, 0, 3, 4, 6, 4, 2, 7, 8, 6, 0, 7, 7, 0
Offset: 1

Views

Author

Jean-François Alcover, Apr 25 2016

Keywords

Examples

			3.17045934214256636532648824888226302856125443631798948742143398...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 117.

Crossrefs

Programs

  • Mathematica
    digits = 98; B3 = EulerGamma - NSum[PrimeZetaP'[n], {n, 2, Infinity}, WorkingPrecision -> 2 digits, NSumTerms -> 200]; RealDigits[Log[2 Pi] + B3, 10, digits][[1]]

Formula

C = log(2*Pi) + EulerGamma - Sum_{n >= 2} P'(n), where P'(n) is the prime zeta P function derivative.

A062739 Odd powerful numbers.

Original entry on oeis.org

1, 9, 25, 27, 49, 81, 121, 125, 169, 225, 243, 289, 343, 361, 441, 529, 625, 675, 729, 841, 961, 1089, 1125, 1225, 1323, 1331, 1369, 1521, 1681, 1849, 2025, 2187, 2197, 2209, 2401, 2601, 2809, 3025, 3087, 3125, 3249, 3267, 3375, 3481, 3721, 3969, 4225
Offset: 1

Views

Author

Labos Elemer, Jul 12 2001

Keywords

Comments

Smallest term of this sequence not also in A075109 is 675, followed by 1125. - Alonso del Arte, Nov 22 2011

Examples

			Consecutive-odd examples from Sentance: {25,27},{70225,70227},{189750625,189750627}
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B16

Crossrefs

Cf. A076445 (consecutive odd powerful numbers).

Programs

  • Mathematica
    Powerful[n_Integer] := (n ==1) || Min[Transpose[FactorInteger[n]][[2]]]>=2; Select[Range[5000],OddQ[ # ]&&Powerful[ # ]&] (* T. D. Noe, May 04 2006 *)
    Join[{1},Select[Range[3,4301,2],Min[FactorInteger[#][[All,2]]]>1&]] (* Harvey P. Dale, Jan 08 2021 *)

Formula

It is not true that a(n) = A001694(2n-1).
Sum_{n>=1} 1/a(n) = (2/3) * Sum_{n>=1} 1/A001694(n) = 2*zeta(2)*zeta(3)/(3*zeta(6)) = (2/3) * A082695 = 1.2957309... - Amiram Eldar, Jun 23 2020

Extensions

Checked by T. D. Noe, May 04 2006

A376936 Powerful numbers divisible by cubes of 2 distinct primes.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
Offset: 1

Views

Author

Michael De Vlieger, Oct 16 2024

Keywords

Comments

Numbers m with coreful divisors d, m/d such that neither d | m/d nor m/d | d, i.e., numbers m such that there exists a divisor pair (d, m/d) such that rad(d) = rad(m/d) but gcd(d, m/d) > 1 is neither d nor m/d, where rad = A007947. Divisors in each pair must be dissimilar and each in A126706.
Proper subset of A320966.
Contains A372695, A177493, and A162142. Does not contain A085986.

Examples

			216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12.
432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18.
Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n)
   n |   a(n)   divisor pairs d X a(n)/d
  ---------------------------------------------------------------------------
   1 |   216:   12 X 18;
   2 |   432:   18 X 24;
   3 |   648:   12 X 54;
   4 |   864:   24 X 36, 18 X 48;
   5 |  1000:   20 X 50;
   6 |  1296:   24 X 54;
   7 |  1728:   18 X 96, 36 X 48;
   8 |  1944:   12 X 162, 36 X 54;
   9 |  2000:   40 X 50;
  10 |  2592:   24 X 108, 48 X 54;
  11 |  2744:   28 X 98;
  12 |  3375:   45 X 75;
  13 |  3456:   18 X 192, 36 X 96, 48 X 72;
  22 |  7776:   24 X 324, 48 X 162, 54 X 144, 72 X 108;
  58 | 31104:   48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
		

Crossrefs

Programs

  • Mathematica
    Union@ Select[
      Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) = 0.021194288968234037106579437374641326044... . - Amiram Eldar, Nov 08 2024

A028415 Numerator of Sum_{k=1..n} 1/phi(k).

Original entry on oeis.org

1, 2, 5, 3, 13, 15, 47, 25, 13, 55, 281, 74, 301, 311, 637, 163, 1319, 453, 4117, 4207, 4267, 4339, 48089, 49079, 9895, 10027, 10115, 10247, 72125, 73511, 369403, 93217, 9391, 75821, 76283, 77207, 77515, 78131, 78593, 39643, 49727, 100609, 100939, 25408, 204419
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 2, 5/2, 3, 13/4, 15/4, 47/12, 25/6, 13/3, 55/12, 281/60, 74/15, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.27, page 29.

Crossrefs

Cf. A000010, A048049 (denominators).

Programs

  • Maple
    map(numer, ListTools:-PartialSums(map(1/numtheory:-phi, [$1..10000]))); # Robert Israel, Apr 16 2019
  • Mathematica
    Numerator[Table[Sum[1/EulerPhi[k],{k,n}],{n,50}]] (* Harvey P. Dale, Aug 24 2012 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/eulerphi(k))); \\ Michel Marcus, Sep 18 2022

Formula

a(n)/A048049(n) = c * (log(n) + gamma - s) + O(log(n)^(2/3)/n), where c = zeta(2)*zeta(3)/zeta(6) (A082695), gamma is Euler's constant (A001620), and s = Sum_{p prime} log(p)/(p^2-p+1) (A085609) (Sitaramachandrarao, 1985). - Amiram Eldar, Sep 18 2022

A068468 Decimal expansion of zeta(6)/(zeta(2)*zeta(3)).

Original entry on oeis.org

5, 1, 4, 5, 1, 0, 1, 0, 1, 5, 0, 8, 3, 9, 3, 1, 2, 3, 0, 7, 3, 2, 8, 1, 1, 8, 6, 7, 7, 2, 7, 8, 9, 6, 1, 6, 5, 0, 6, 5, 6, 5, 7, 4, 6, 9, 0, 7, 1, 2, 8, 0, 1, 8, 3, 3, 7, 5, 4, 3, 4, 5, 7, 2, 2, 2, 4, 5, 5, 1, 4, 9, 4, 9, 3, 8, 2, 4, 9, 4, 6, 7, 7, 3, 2, 3, 8, 4, 2, 4, 7, 8, 6, 8, 7, 5, 9, 7, 4, 8, 0, 8, 4, 6
Offset: 0

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			0.514510101508393123073281186772789616506565746907128.....
		

Crossrefs

Cf. A013661 (zeta(2)), A002117 (zeta(3)), A013664 (zeta(6)), A082695 (inverse).

Programs

  • Magma
    R:=RealField(150); SetDefaultRealField(R); L:=RiemannZeta(); 2*Pi(R)^4/(315*Evaluate(L,3)); // G. C. Greubel, Mar 11 2018
  • Mathematica
    RealDigits[Zeta[6]/(Zeta[2]*Zeta[3]), 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
  • PARI
    default(realprecision, 100); zeta(6)/(zeta(2)*zeta(3)) \\ G. C. Greubel, Mar 11 2018
    

Formula

From Amiram Eldar, Nov 07 2022: (Start)
Equals 2*Pi^4/(315*zeta(3)).
Equals Product_{p prime} (1 - 1/(p^2-p+1)). (End)

A085609 Decimal expansion of Sum{p prime>=2} log(p)/(p^2-p+1).

Original entry on oeis.org

6, 0, 8, 3, 8, 1, 7, 1, 7, 8, 6, 3, 3, 2, 4, 7, 2, 2, 6, 8, 3, 8, 3, 4, 5, 8, 5, 8, 1, 5, 6, 2, 0, 1, 8, 7, 7, 5, 9, 1, 4, 8, 5, 9, 8, 2, 2, 6, 0, 2, 2, 5, 2, 1, 1, 9, 9, 5, 7, 3, 0, 8, 1, 5, 5, 2, 1, 7, 9, 7, 3, 1, 6, 6, 2, 1, 0, 7, 3, 9, 9, 5, 1, 5, 3, 4, 1, 7, 1, 3, 6, 8, 9, 7, 6, 6, 3, 1, 6, 8, 5, 6, 7, 4, 2
Offset: 0

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

Keywords

Comments

Appears in the asymptotic formula for Sum{k=1..n} 1/phi(k), with phi(k) being Euler's totient function. - Stanislav Sykora, Nov 14 2014

Examples

			0.60838171786332472...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.

Crossrefs

Programs

  • Mathematica
    digits = 105; m0 = 100; dm = 100; Clear[s]; s[n_] := s[n] = Sum[ Switch[ Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1] * PrimeZetaP'[k], {k, 2, n}] // N[#, digits+40]&; Print[m0, " ", s[m0]]; s[m = m0+dm]; While[ Print[m, " ", s[m]]; RealDigits[s[m], 10, digits+5] != RealDigits[s[m-dm], 10, digits+5], m = m+dm]; RealDigits[s[m], 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)

Formula

Equals lim_{n->infinity} (Gamma + log(n) - c*Sum_{k=1..n} 1/phi(k)), where Gamma is the Euler-Mascheroni constant, and c = zeta(6)/(zeta(2)*zeta(3)) = 1/A082695. This equals further lim_{n->infinity} Sum{k=1..n} (1/k - c/phi(k)) and lim_{n->infinity}(A001008(n)/A002805(n) - (A028415(n)/A048049(n))/A082695). - Stanislav Sykora, Nov 15 2014

Extensions

More terms from Benoit Cloitre, Mar 06 2013
More digits from Jean-François Alcover, Sep 11 2015

A323333 The Euler phi function values of the powerful numbers, A000010(A001694(n)).

Original entry on oeis.org

1, 2, 4, 6, 8, 20, 18, 16, 12, 42, 32, 24, 54, 40, 36, 110, 100, 64, 48, 156, 84, 80, 72, 120, 162, 128, 96, 272, 108, 294, 342, 168, 160, 144, 252, 220, 200, 256, 506, 192, 500, 216, 360, 312, 486, 336, 320, 812, 288, 240, 930, 440, 324, 400, 512, 660, 600
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Murata's constant Product_{p prime}(1 + 1/(p-1)^2) (A065485).
Sequence is injective: no value occurs more than once. - Amiram Eldar and Antti Karttunen, Sep 30 2019

Crossrefs

Cf. A000010, A001694, A002618 (a subsequence), A065485, A082695, A112526, A323332.

Programs

  • Mathematica
    EulerPhi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after Harvey P. Dale at A001694 *)
  • PARI
    lista(nn) = apply(x->eulerphi(x), select(x->ispowerful(x), vector(nn, k, k))); \\ Michel Marcus, Jan 11 2019
Previous Showing 11-20 of 56 results. Next