cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019

A274520 a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(7).

Original entry on oeis.org

0, 2, 4, 20, 64, 248, 880, 3248, 11776, 43040, 156736, 571712, 2083840, 7597952, 27698944, 100985600, 368164864, 1342243328, 4893475840, 17840411648, 65041678336, 237125826560, 864501723136, 3151758405632, 11490527150080, 41891604733952, 152726372368384
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2016

Keywords

Comments

Number of zeros in substitution system {0 -> 111, 1 -> 1001} at step n from initial string "1" (see example).

Examples

			Evolution from initial string "1": 1 -> 1001 -> 10011111111001 -> 1001111111100110011001100110011001100110011111111001 -> ...
Therefore, number of zeros at step n:
a(0) = 0;
a(1) = 2;
a(2) = 4;
a(3) = 20, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 6}, {0, 2}, 27]
  • PARI
    a(n)=([0,1; 6,2]^n*[0;2])[1,1] \\ Charles R Greathouse IV, Jul 26 2016

Formula

O.g.f.: 2*x/(1 - 2*x - 6*x^2).
E.g.f.: 2*exp(x)*sinh(sqrt(7)*x)/sqrt(7).
Dirichlet g.f.: (PolyLog(s,1+sqrt(7)) - PolyLog(s,1-sqrt(7)))/sqrt(7), where PolyLog(s,x) is the polylogarithm function.
a(n) = 2*a(n-1) + 6*a(n-2).
a(n) = 2*A083099(n).
Lim_{n->infinity} a(n+1)/a(n) = 1 + sqrt(7) = 1 + A010465.

A291008 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 7*S^2.

Original entry on oeis.org

0, 7, 14, 70, 224, 868, 3080, 11368, 41216, 150640, 548576, 2000992, 7293440, 26592832, 96946304, 353449600, 1288577024, 4697851648, 17127165440, 62441440768, 227645874176, 829940392960, 3025756030976, 11031154419712, 40216845025280, 146620616568832
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    [n le 2 select 7*(n-1) else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^7;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291008 *)
    LinearRecurrence[{2,6}, {0,7}, 40] (* G. C. Greubel, Jun 01 2023 *)
  • SageMath
    A291008=BinaryRecurrenceSequence(2,6,0,7)
    [A291008(n) for n in range(41)] # G. C. Greubel, Jun 01 2023

Formula

G.f.: 7*x/(1 - 2*x - 6*x^2).
a(n) = 2*a(n-1) + 6*a(n-2) for n >= 3.
a(n) = 7*A083099(n).
a(n) = (sqrt(7)*((1+sqrt(7))^n - (1-sqrt(7))^n)) / 2. - Colin Barker, Aug 23 2017
a(n) = 7*i^(n-1)*6^((n-1)/2)*ChebyshevU(n-1, -i/sqrt(6)). - G. C. Greubel, Jun 01 2023

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A127226 a(n) = 2*a(n-1) + 6*a(n-2) with a(0)=2, a(1)=2.

Original entry on oeis.org

2, 2, 16, 44, 184, 632, 2368, 8528, 31264, 113696, 414976, 1512128, 5514112, 20100992, 73286656, 267179264, 974078464, 3551232512, 12946935808, 47201266688, 172084148224, 627375896576, 2287256682496, 8338768744448, 30401077583872, 110834767634432, 404076000772096
Offset: 0

Views

Author

Miklos Kristof, Mar 26 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a[0]=2;a[1]=2;a[n_]:=2a[n-1]+6a[n-2];Table[a[n],{n,0,22}] (* James C. McMahon, Dec 30 2024 *)
  • PARI
    Vec(2*(1 - x)/(1 - 2*x - 6*x^2) + O(x^31)) \\ Andrew Howroyd, Dec 30 2024
  • Sage
    [lucas_number2(n,2,-6) for n in range(0, 23)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: 2*(1 - x)/(1 - 2*x - 6*x^2).
E.g.f.: (exp((1+sqrt(7))*x) + exp((1-sqrt(7))*x));
a(n) = A083099(n) + 6*A083099(n-2).
G.f.: G(0), where G(k)= 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
a(n) = 2*A083098(n). - Andrew Howroyd, Dec 30 2024

Extensions

a(23) onwards from Andrew Howroyd, Dec 30 2024

A160444 Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1

Views

Author

Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009

Keywords

Comments

This sequence is the case k=3 of a family of sequences with recurrences a(2*n+1) = a(2*n) + a(2*n-1), a(2*n+2) = k*a(2*n-1) + a(2*n), a(1)=0, a(2)=1. Values of k, for k >= 0, are given by A057979 (k=0), A158780 (k=1), A002965 (k=2), this sequence (k=3). See "Family of sequences for k" link for other connected sequences.
It seems that the ratio of two successive numbers with even, or two successive numbers with odd, indices approaches sqrt(k) for these sequences as n-> infinity.
This algorithm can be found in a historical figure named "Villardsche Figur" of the 13th century. There you can see a geometrical interpretation.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A160444
        if (n<5): return ((n+1)//3)
        else: return 2*(a(n-2) + a(n-4))
    [a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023

Formula

a(n) = 2*a(n-2) + 2*a(n-4).
a(2*n+1) = A002605(n).
a(2*n) = A026150(n-1).

Extensions

Edited by R. J. Mathar, May 14 2009

A120711 Expansion of 2*x*(7+16*x-2*x^2-14*x^3)/(1-11*x^2-12*x^3+10*x^4+12*x^5).

Original entry on oeis.org

0, 14, 32, 150, 492, 1894, 6724, 24854, 89972, 329238, 1197972, 4372054, 15930580, 58096214, 211770452, 772129110, 2814859092, 10262536534, 37414140244, 136403674454, 497291840852, 1813006427478, 6609762501972, 24097566365014
Offset: 0

Views

Author

Roger L. Bagula, Aug 12 2006

Keywords

Comments

Former title: 7 X 7 matrix Matrov of seven vertex Fano Plane: Characteristic polynomial: 12 + 10*x - 24*x^2 - 21*x^3 + 12*x^4 + 12*x^5 - x^7.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 2*x*(7+16*x-2*x^2-14*x^3)/(1-11*x^2-12*x^3+10*x^4+12*x^5) )); // G. C. Greubel, Jul 22 2023
    
  • Mathematica
    M = {{0,1,0,0,0,1,1}, {1,0,1,0,0,0,1}, {0,1,0,1,0,0,1}, {0,0,1,0,1,0, 1}, {0,0,0,1,0,1,1}, {1,0,0,0,1,0,1}, {1,1,1,1,1,1,0}};
    v[1] = {0,1,1,2,3,5,8}; v[n_]:= v[n]= M.v[n-1];
    Table[v[n][[1]], {n,50}]
    LinearRecurrence[{0,11,12,-10,-12}, {0,14,32,150,492}, 40] (* G. C. Greubel, Jul 22 2023 *)
  • SageMath
    A083099=BinaryRecurrenceSequence(2,6,0,1)
    def A120711(n): return (1/3)*(-1 -3*(-1)^n +(-2)^(n+1) +6*(A083099(n+1) +4*A083099(n)))
    [A120711(n) for n in range(41)] # G. C. Greubel, Jul 22 2023

Formula

a(n) = 11*a(n-2) + 12*a(n-3) - 10*a(n-4) - 12*a(n-5).
G.f.: 2*x*(7+16*x-2*x^2-14*x^3)/((1-x)*(1+x)*(1+2*x)*(1-2*x-6*x^2)). - Colin Barker, Mar 26 2012
a(n) = (1/3)*(-1 - 3*(-1)^n + (-2)^(n+1) + 6*(A083099(n+1) + 4*A083099(n))). - G. C. Greubel, Jul 22 2023

Extensions

Edited by G. C. Greubel, Jul 22 2023

A247584 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 13, 43, 113, 253, 509, 969, 1849, 3719, 8009, 18027, 40897, 91257, 198697, 423777, 894081, 1886011, 4007301, 8594411, 18560081, 40181493, 86872293, 187197193, 402060793, 861827743, 1846685729, 3960390059, 8504658049, 18283290609, 39325827729
Offset: 0

Views

Author

Alexander Samokrutov, Sep 20 2014

Keywords

Comments

a(n)/a(n-1) tends to 2.1486... = 1 + 2^(1/5), the real root of the polynomial x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 3.
If x^5 = 2 and n >= 0, then there are unique integers a, b, c, d, g such that (1 + x)^n = a + b*x + c*x^2 + d*x^3 + g*x^4. The coefficient a is a(n) (from A052102). - Alexander Samokrutov, Jul 11 2015
If x=a(n), y=a(n+1), z=a(n+2), s=a(n+3), t=a(n+4) then x, y, z, s, t satisfies Diophantine equation (see link). - Alexander Samokrutov, Jul 11 2015

Crossrefs

Cf. A005531.

Programs

  • Magma
    [n le 5 select 1 else 5*Self(n-1) -10*Self(n-2) +10*Self(n-3) -5*Self(n-4) +3*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jul 11 2015
    
  • Maple
    m:=50; S:=series( (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 15 2021
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,3}, {1,1,1,1,1}, 50] (* Vincenzo Librandi, Jul 11 2015 *)
  • Maxima
    makelist(sum(2^k*binomial(n,5*k), k, 0, floor(n/5)), n, 0, 50); /* Alexander Samokrutov, Jul 11 2015 */
    
  • PARI
    Vec((1-x)^4/(1-5*x+10*x^2-10*x^3+5*x^4-3*x^5) + O(x^100)) \\ Colin Barker, Sep 22 2014
    
  • Sage
    [sum(2^j*binomial(n, 5*j) for j in (0..n//5)) for n in (0..50)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5).
a(n) = Sum_{k=0...floor(n/5)} (2^k*binomial(n,5*k)). - Alexander Samokrutov, Jul 11 2015
G.f.: (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5). - Colin Barker, Sep 22 2014

A307469 a(n) = 2*a(n-1) + 6*a(n-2) for n >= 2, a(0) = 1, a(1) = 5.

Original entry on oeis.org

1, 5, 16, 62, 220, 812, 2944, 10760, 39184, 142928, 520960, 1899488, 6924736, 25246400, 92041216, 335560832, 1223368960, 4460102912, 16260419584, 59281456640, 216125430784, 787939601408, 2872631787520, 10472901183488, 38181593092096, 139200593285120
Offset: 0

Views

Author

Armend Shabani, Apr 09 2019

Keywords

Comments

a(n) is the number of words of length n over alphabet {1,2,3,4,5} such that no odd letter is followed by an odd letter.

Examples

			For n=2 the a(2)=16 solutions are: 12, 14, 21, 22, 23, 24, 25, 32, 34, 41, 42, 43, 44, 45, 52, 54.
		

Crossrefs

The same over alphabet {1,2,3} gives A001045(n+2).

Programs

  • Maple
    aseq:=proc(n) option remember;
    if n<0 then return "seq not defined for negative indices";
    elif n=0 then return 1;
    elif n=1 then return 5;
    else 2*aseq(n-1)+6*aseq(n-2);
    end if;
    end proc:
    seq(aseq(n),n=0..26);
  • Mathematica
    a[0] = 1; a[1] = 5;
    a[n_] := a[n] = 2*a[n - 1] + 6*a[n - 2];
    Table[a[n], {n, 0, 26}]
    LinearRecurrence[{2,6},{1,5},30] (* Harvey P. Dale, Feb 20 2023 *)

Formula

a(n) = (-(2/7)*sqrt(7)+1/2)*(1-sqrt(7))^n+((2/7)*sqrt(7)+1/2)*(1+sqrt(7))^n.
G.f.: (1+3*x)/(1-2*x-6*x^2).
a(n) = 3*A083099(n) + A083099(n+1). - R. J. Mathar, Jan 27 2020

A136425 a(n) = floor((x^n-(1-x)^n)/sqrt(7)+1/2) where x = (sqrt(7)+1)/2.

Original entry on oeis.org

1, 1, 3, 4, 8, 14, 25, 46, 84, 153, 279, 509, 927, 1691, 3082, 5618, 10241, 18667, 34028, 62029, 113070, 206113, 375719, 684889, 1248467, 2275800, 4148501, 7562201, 13784953, 25128255, 45805684, 83498067, 152206593, 277453693, 505763582
Offset: 1

Views

Author

Cino Hilliard, Apr 01 2008

Keywords

Comments

This is analogous to the formula for the n-th Fibonacci number. Even before truncation, these numbers are rational and the decimal part always ends in 5. For x = (sqrt(7)+1)/2, a(n)/a(n-1) -> x. The general form of x is (sqrt(r)+1)/2, r=1,2,3..

Programs

  • PARI
    g(n,r) = for(m=1,n,print1(fib(m,r)",")) fib(n,r) = x=(sqrt(r)+1)/2;floor((x^n-(1-x)^n)/sqrt(r)+.5)

Formula

Asymptotically a(n) ~ A083099(n)/2^(n-1). - R. J. Mathar, Apr 20 2008
a(n) = floor(b(n)/2^n) where b(n) = 2*A083099(n)+2^(n-1). - R. J. Mathar, Sep 10 2016

Extensions

Definition corrected by R. J. Mathar, Apr 20 2008
Previous Showing 21-30 of 31 results. Next