A232598
T(n,k) = Stirling2(n,k) * OrderedBell(k).
Original entry on oeis.org
1, 1, 3, 1, 9, 13, 1, 21, 78, 75, 1, 45, 325, 750, 541, 1, 93, 1170, 4875, 8115, 4683, 1, 189, 3913, 26250, 75740, 98343, 47293, 1, 381, 12558, 127575, 568050, 1245678, 1324204, 545835, 1, 765, 39325, 582750, 3760491, 12391218, 21849366, 19650060, 7087261
Offset: 1
Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.
Compare descriptions of A083355 and A233357.
a(3,1) = 1:
{1,2,3}
a(3,2) = 9:
{1,2}{3}
{1,3}{2}
{2,3}{1}
{1,2}:{3} {3}:{1,2}
{1,3}:{2} {2}:{1,3}
{2,3}:{1} {1}:{2,3}
a(3,3) = 13:
{1}{2}{3}
{1}{2}:{3} {3}:{1}{2}
{1}{3}:{2} {2}:{1}{3}
{2}{3}:{1} {1}:{2}{3}
{1}:{2}:{3}
{1}:{3}:{2}
{2}:{1}:{3}
{2}:{3}:{1}
{3}:{1}:{2}
{3}:{2}:{1}
Triangle begins:
k = 1 2 3 4 5 6 7 8 sums
n
1 1 1
2 1 3 4
3 1 9 13 23
4 1 21 78 75 175
5 1 45 325 750 541 1662
6 1 93 1170 4875 8115 4683 18937
7 1 189 3913 26250 75740 98343 47293 251729
8 1 381 12558 127575 568050 1245678 1324204 545835 3824282
A008277 (Stirling2),
A000670 (ordered Bell),
A068156 (column k=2),
A083355 (row sums: number of preferential arrangements),
A233357 (number of preferential arrangements by number of levels).
A300696
a(n) is the number of n-place formulas in first-order logic when variables are allowed to coincide.
Original entry on oeis.org
1, 2, 8, 46, 350, 3324, 37874, 503458, 7648564, 130722474, 2482437926, 51856030736, 1181704007894, 29172943488602, 775597634145192, 22093062633006326, 671280598744505190, 21671112459225274300, 740767465663838556074, 26727829360555847269034
Offset: 0
A099391
Expansion of e.g.f. 1/(2 - exp(exp(exp(x) - 1) - 1)).
Original entry on oeis.org
1, 1, 5, 36, 342, 4048, 57437, 950512, 17975438, 382424397, 9039989107, 235062317196, 6667866337309, 204905200542916, 6781157167505291, 240446179599065951, 9094120016963808935, 365453749501228063845
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(2-Exp[Exp[Exp[x]-1]-1]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 10 2014 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(exp(exp(x)-1)-1)))) \\ Seiichi Manyama, May 12 2023
A233357
Triangle read by rows: T(n,k) = ((Stirling2)^2)(n,k) * k!
Original entry on oeis.org
1, 2, 2, 5, 12, 6, 15, 64, 72, 24, 52, 350, 660, 480, 120, 203, 2024, 5670, 6720, 3600, 720, 877, 12460, 48552, 83160, 71400, 30240, 5040, 4140, 81638, 424536, 983808, 1201200, 806400, 282240, 40320
Offset: 1
Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.
Compare descriptions of A083355 and A232598.
a(3,1)=5:
{1,2,3}
{1,2}{3}
{1,3}{2}
{2,3}{1}
{1}{2}{3}
a(3,2)=12:
{1,2}:{3} {3}:{1,2}
{1,3}:{2} {2}:{1,3}
{2,3}:{1} {1}:{2,3}
{1}{2}:{3} {3}:{1}{2}
{1}{3}:{2} {2}:{1}{3}
{2}{3}:{1} {1}:{2}{3}
a(3,3)=6:
{1}:{2}:{3}
{1}:{3}:{2}
{2}:{1}:{3}
{2}:{3}:{1}
{3}:{1}:{2}
{3}:{2}:{1}
Triangle begins:
k = 1 2 3 4 5 6 7 8 sums
1 1 1
2 2 2 4
3 5 12 6 23
4 15 64 72 24 175
5 52 350 660 480 120 1662
6 203 2024 5670 6720 3600 720 18937
7 877 12460 48552 83160 71400 30240 5040 251729
8 4140 81638 424536 983808 1201200 806400 282240 40320 3824282
A008277 (Stirling2),
A039810 (square of Stirling2),
A000110 (Bell),
A000142 (factorials),
A083355 (row sums: number of preferential arrangements),
A232598 (number of preferential arrangements by number of blocks).
A346433
E.g.f.: 1 / (2 - exp(2*(exp(x) - 1))).
Original entry on oeis.org
1, 2, 14, 142, 1910, 32094, 647126, 15223198, 409276054, 12378827166, 416006542550, 15378483225758, 620176642174742, 27094392220198814, 1274759052849262422, 64259896197635471006, 3455259407744574799254, 197401403111903906001310, 11941074177046918285056470
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(2 - Exp[2 (Exp[x]- 1)]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] BellB[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
Table[Sum[StirlingS2[n, k] 2^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 0, 18}]
-
my(x='x+O('x^25)); Vec(serlaplace(1 / (2 - exp(2*(exp(x) - 1))))) \\ Michel Marcus, Jul 18 2021
A328488
Expansion of e.g.f. 1 / (2 - exp(x * exp(x))).
Original entry on oeis.org
1, 1, 5, 34, 307, 3456, 46659, 734882, 13227995, 267871036, 6027206803, 149176155030, 4027831914099, 117816299188472, 3711283196035523, 125258162280991858, 4509378597919760779, 172486973301491042964, 6985853719202139488211, 298650859698906574479278
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(2 - Exp[x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
A332254
E.g.f.: 1 / (2 - exp(exp(x) - 1 - x)).
Original entry on oeis.org
1, 0, 1, 1, 10, 31, 271, 1534, 14603, 120173, 1310224, 13947517, 175477699, 2265702388, 32673218085, 492565328493, 8053045395018, 138334722101571, 2535114408394699, 48790865853110950, 991843960201311455, 21121971129683138297, 471959969940724275432
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(2 - Exp[Exp[x] - 1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(1/(2 - exp(exp(x + O(x*x^n)) - 1 - x))))} \\ Andrew Howroyd, Feb 08 2020
A332256
E.g.f.: 1 / (2 - exp(sinh(x))).
Original entry on oeis.org
1, 1, 3, 14, 87, 672, 6231, 67412, 833475, 11593140, 179170947, 3045978388, 56490392943, 1134970258372, 24557211519951, 569294311105300, 14077429483372251, 369861235318338404, 10289111057247180411, 302132879478864660340, 9338874072977661538119
Offset: 0
-
nmax = 20; CoefficientList[Series[1/(2 - Exp[Sinh[x]]), {x, 0, nmax}], x] Range[0, nmax]!
-
seq(n)={Vec(serlaplace(1/(2 - exp(sinh(x + O(x*x^n))))))} \\ Andrew Howroyd, Feb 08 2020
A335849
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Bell(k-1) * a(n-k).
Original entry on oeis.org
1, 1, 3, 14, 87, 675, 6282, 68201, 846183, 11811048, 183176577, 3124958179, 58157682072, 1172551946395, 25459025908899, 592263131497942, 14696581853565723, 387477880784385143, 10816856730117090114, 318739828787430822853, 9886623306152849028771
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] BellB[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
nmax = 20; CoefficientList[Series[Exp[1]/(Exp[1] + ExpIntegralEi[1] - ExpIntegralEi[Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
Comments