A240444
Triangle T(n, k) = Number of ways to arrange k indistinguishable points on an n X n square grid so that no four of them are vertices of a square of any orientation.
Original entry on oeis.org
1, 1, 1, 4, 6, 4, 1, 9, 36, 84, 120, 96, 32, 1, 16, 120, 560, 1800, 4128, 6726, 7492, 5238, 1924, 232, 1, 25, 300, 2300, 12600, 52080, 166702, 416622, 808488, 1196196, 1306464, 1001364, 497940, 141336, 18208, 636, 1, 36, 630, 7140, 58800, 373632, 1895938, 7835492
Offset: 1
The triangle begins:
1, 1;
1, 4, 6, 4;
1, 9, 36, 84, 120, 96, 32;
1, 16, 120, 560, 1800, 4128, 6726, 7492, 5238, 1924, 232;
...
A253650
Triangular numbers that are the product of a triangular number and a square number (both greater than 1).
Original entry on oeis.org
300, 1176, 3240, 7260, 14196, 25200, 29403, 41616, 64980, 97020, 139656, 195000, 228150, 265356, 353220, 461280, 592416, 749700, 936396, 1043290, 1155960, 1412040, 1708476, 2049300, 2438736, 2881200, 3381300, 3499335, 3943836, 4573800, 5276376, 6056940, 6921060, 7874496
Offset: 1
3240 is in the sequence because 3240 is triangular number (3240=80*81/2), and 3240=10*324=(4*5/2)*(18^2), product of triangular number 10 and square number 324.
-
triQ[n_] := IntegerQ@ Sqrt[8n + 1]; lst = Sort@ Flatten@ Outer[Times, Table[ n(n + 1)/2, {n, 2, 400}], Table[ n^2, {n, 2, 200}]]; Select[ lst, triQ] (* Robert G. Wilson v, Jan 13 2015 *)
-
{i=3; j=3; while(i<=10^7, k=3; p=3; c=0; while(k1, c=k); if(c>0, print1(i, ", ")); k+=p; p+=1); i+=j; j+=1)}
-
is(n)=if(!ispolygonal(n,3), return(0)); fordiv(core(n,1)[2], d, d>1 && ispolygonal(n/d^2,3) && n>d^2 && return(1)); 0 \\ Charles R Greathouse IV, Sep 29 2015
-
list(lim)=my(v=List(),t,c); for(n=24,(sqrt(8*lim+1)-1)\2, t=n*(n+1)/2; c=core(n,1)[2]*core(n+1,1)[2]; if(valuation(t,2)\2 < valuation(c,2), c/=2); fordiv(c, d, if(d>1 && ispolygonal(t/d^2,3) && t>d^2, listput(v,t); break))); Vec(v) \\ Charles R Greathouse IV, Sep 29 2015
A241219
Number of ways to choose two points on a centered hexagonal grid of size n.
Original entry on oeis.org
0, 21, 171, 666, 1830, 4095, 8001, 14196, 23436, 36585, 54615, 78606, 109746, 149331, 198765, 259560, 333336, 421821, 526851, 650370, 794430, 961191, 1152921, 1371996, 1620900, 1902225, 2218671, 2573046, 2968266, 3407355, 3893445, 4429776, 5019696, 5666661
Offset: 1
-
[Binomial(3*n^2-3*n+1, 2): n in [1..35]]; // Vincenzo Librandi, Apr 19 2014
-
seq(binomial(3*n^2-3*n+1, 2),n=1..34); # Martin Renner, Apr 27 2014
op(PolynomialTools[CoefficientList](convert(series(-3*x^2*(7*x^2+22*x+7)/(x-1)^5, x=0, 35), polynom), x)[2..35]); # Martin Renner, Apr 27 2014
-
CoefficientList[Series[-3 x^2 (7 x^2 + 22 x + 7)/(x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 19 2014 *)
-
concat(0, Vec(-3*x^2*(7*x^2+22*x+7) / (x-1)^5 + O(x^100))) \\ Colin Barker, Apr 18 2014
A243645
Number of ways two L-tiles can be placed on an n X n square.
Original entry on oeis.org
0, 0, 0, 1, 20, 87, 244, 545, 1056, 1855, 3032, 4689, 6940, 9911, 13740, 18577, 24584, 31935, 40816, 51425, 63972, 78679, 95780, 115521, 138160, 163967, 193224, 226225, 263276, 304695, 350812, 401969, 458520, 520831, 589280, 664257, 746164, 835415, 932436
Offset: 0
a(3) = 1:
._____.
|_| |_|
| |___|
|___|_| .
-
a:= n-> `if`(n<2, 0, ((((n-4)*n-1)*n+18)*n-16)/2):
seq(a(n), n=0..50);
-
CoefficientList[Series[x^3 (x^3+3x^2-15x-1)/(x-1)^5,{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,0,0,1,20,87,244},40] (* Harvey P. Dale, Mar 06 2016 *)
A253285
a(n) = RF(n+1,3)*C(n+2,n-1), where RF(a,n) is the rising factorial.
Original entry on oeis.org
0, 24, 240, 1200, 4200, 11760, 28224, 60480, 118800, 217800, 377520, 624624, 993720, 1528800, 2284800, 3329280, 4744224, 6627960, 9097200, 12289200, 16364040, 21507024, 27931200, 35880000, 45630000, 57493800, 71823024, 89011440, 109498200, 133771200, 162370560
Offset: 0
-
List([0..40], n -> n*((n+1)*(n+2))^2*(n+3)/6); # Bruno Berselli, Mar 06 2018
-
[n*((n+1)*(n+2))^2*(n+3)/6: n in [0..40]]; // Bruno Berselli, Mar 06 2018
-
seq(n*((n+1)*(n+2))^2*(n+3)/6,n=0..19);
-
Table[n ((n + 1) (n + 2))^2 (n + 3)/6, {n, 0, 40}] (* Bruno Berselli, Mar 06 2018 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,24,240,1200,4200,11760,28224},40] (* Harvey P. Dale, Aug 05 2024 *)
-
[n*((n+1)*(n+2))**2*(n+3)/6 for n in range(40)] # Bruno Berselli, Mar 06 2018
-
[n*((n+1)*(n+2))^2*(n+3)/6 for n in (0..40)] # Bruno Berselli, Mar 06 2018
A253652
Triangular numbers that are the product of a triangular number and an oblong number.
Original entry on oeis.org
0, 6, 36, 120, 210, 300, 630, 1176, 2016, 3240, 3570, 4950, 7140, 7260, 10296, 14196, 19110, 23436, 25200, 32640, 39060, 41616, 52326, 61776, 64980, 79800, 97020, 116886, 139656, 145530, 165600, 195000, 228150, 242556, 265356, 304590, 306936, 349866, 353220, 404550, 426426, 461280
Offset: 1
630 is in the sequence because it is a triangular number (630 = 35*36/2) and 630 = 105*6, with 105 = 14*15/2, triangular number, and 6 = 2*3, oblong number.
-
{i=0;j=1;print1(0,", ");while(i<=10^6,k=1;p=2;c=0;while(k0,c=k);if(c>0,print1(i,", "));k+=p;p+=1);i+=j;j+=1)}
A254881
Triangle read by rows, T(n,k) = sum(j=0..k-1, S(n+1,j+1)*S(n,k-j)) where S denotes the Stirling cycle numbers A132393, T(0,0)=1, n>=0, 0<=k<=2n.
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 12, 40, 51, 31, 9, 1, 0, 144, 564, 904, 769, 376, 106, 16, 1, 0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1, 0, 86400, 408960, 840216, 991276, 748530, 381065, 133848, 32523, 5370, 575, 36, 1, 0, 3628800, 18299520
Offset: 0
[1]
[0, 1, 1]
[0, 2, 5, 4, 1]
[0, 12, 40, 51, 31, 9, 1]
[0, 144, 564, 904, 769, 376, 106, 16, 1]
[0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1]
For example in the case n=3 the polynomial (k^6+9*k^5+31*k^4+51*k^3+40*k^2+12*k)/3! generates the Lah numbers 0, 24, 240, 1200, 4200, 11760, 28224, ... (A253285).
The sequences
A000012,
A002378,
A083374,
A253285 are the Lah number rows generated by the polynomials divided by n! for n=0, 1, 2, 3 respectivly.
-
# This is a special case of the recurrence given in A246117.
t := proc(n,k) option remember; if n=0 and k=0 then 1 elif
k <= 0 or k>n then 0 else iquo(n,2)*t(n-1,k)+t(n-1,k-1) fi end:
A254881 := (n,k) -> t(2*n,k):
seq(print(seq(A254881(n,k), k=0..2*n)), n=0..5);
# Illustrating the comment:
restart: with(PolynomialTools): with(CurveFitting): for N from 0 to 5 do
CoefficientList(PolynomialInterpolation([seq([k,N!*((N+k)!/k!)*binomial(N+k-1,k-1)], k=0..2*N)], n), n) od;
-
Flatten[{1,Table[Table[Sum[Abs[StirlingS1[n+1,j+1]] * Abs[StirlingS1[n,k-j]],{j,0,k-1}],{k,0,2*n}],{n,1,10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
def T(n,k):
if n == 0: return 1
return sum(stirling_number1(n+1,j+1)*stirling_number1(n,k-j) for j in range(k))
for n in range (6): [T(n,k) for k in (0..2*n)]
A342719
Array read by ascending antidiagonals: T(k, n) is the sum of the consecutive positive integers from 1 to (n - 1)*k placed along the perimeter of an n-th order perimeter-magic k-gon.
Original entry on oeis.org
21, 36, 45, 55, 78, 78, 78, 120, 136, 120, 105, 171, 210, 210, 171, 136, 231, 300, 325, 300, 231, 171, 300, 406, 465, 465, 406, 300, 210, 378, 528, 630, 666, 630, 528, 378, 253, 465, 666, 820, 903, 903, 820, 666, 465, 300, 561, 820, 1035, 1176, 1225, 1176, 1035, 820, 561
Offset: 3
The array begins:
k\n| 3 4 5 6 7 ...
---+------------------------
3 | 21 45 78 120 171 ...
4 | 36 78 136 210 300 ...
5 | 55 120 210 325 465 ...
6 | 78 171 300 465 666 ...
7 | 105 231 406 630 903 ...
...
- Terrel Trotter, Perimeter-Magic Polygons, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equation 3).
-
T[k_,n_]:=(n-1)k((n-1)k+1)/2; Table[T[k+3-n,n],{k,3,12},{n,3,k}]//Flatten
A368831
Irregular triangle read by rows: T(n,k) is the number of dominating subsets with cardinality k of the n X n rook graph (n >= 0, 0 <= k <= n^2).
Original entry on oeis.org
1, 0, 1, 0, 0, 6, 4, 1, 0, 0, 0, 48, 117, 126, 84, 36, 9, 1, 0, 0, 0, 0, 488, 2640, 6712, 10864, 12726, 11424, 8008, 4368, 1820, 560, 120, 16, 1, 0, 0, 0, 0, 0, 6130, 58300, 269500, 808325, 1778875, 3075160, 4349400, 5154900, 5186300, 4454400, 3268360, 2042950, 1081575, 480700, 177100, 53130, 12650, 2300, 300, 25, 1
Offset: 0
Triangle begins: (first 5 rows)
1;
0, 1;
0, 0, 6, 4, 1;
0, 0, 0, 48, 117, 126, 84, 36, 9, 1;
0, 0, 0, 0, 488, 2640, 6712, 10864, 12726, 11424, 8008, 4368, 1820, 560, 120, 16, 1;
...
- John J. Watkins, Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004, chapter 7.
-
R[n_, m_] := CoefficientList[((x + 1)^n - 1)^m - (-1)^m*Sum[Binomial[m, k]*(-1)^k*((1 + x)^k - 1)^n, {k, 0, m - 1}], x];
Flatten[Table[R[n,n],{n,1,5}]]
A227970
Triangular arithmetic on half-squares: b(n)*(b(n) - 1)/2 where b(n) = floor(n^2/2).
Original entry on oeis.org
0, 0, 1, 6, 28, 66, 153, 276, 496, 780, 1225, 1770, 2556, 3486, 4753, 6216, 8128, 10296, 13041, 16110, 19900, 24090, 29161, 34716, 41328, 48516, 56953, 66066, 76636, 87990, 101025, 114960, 130816, 147696, 166753, 186966, 209628, 233586, 260281, 288420, 319600, 352380, 388521, 426426
Offset: 0
Comments