A322009 1/(Integral_{x=0..1} x^(x^(x^n)) dx - 1/2), rounded to the nearest integer.
4, 14, 33, 64, 110, 174, 260, 369, 506, 672, 872, 1108, 1382, 1699, 2061, 2472, 2933, 3448, 4021, 4653, 5349, 6110, 6941, 7844, 8822, 9878, 11015, 12237, 13545, 14943, 16435, 18023, 19709, 21498, 23392, 25394, 27507, 29734, 32079, 34543, 37131, 39844, 42687, 45662, 48772
Offset: 0
Keywords
Examples
For n=0, Integral_{x=0..1} x^(x^(x^0)) dx = Integral_{x=0..1} x^x dx = A083648 = 0.7834..., and 1/(0.7834... - 0.5) = 1 / 0.2834... = 3.528..., so a(0) = round(3.528...) = 4. For n=1, Integral_{x=0..1} x^(x^(x^1)) dx = Integral_{x=0..1} x^(x^x) dx = 0.5731..., and 1/(0.5731... - 0.5) = 1 / 0.0731... = 13.67..., so a(1) = round(13.67...) = 14.
Links
- Vladimir Reshetnikov, Integrals of power towers, on MathOverflow.net, Feb. 26, 2019.
Programs
-
Maple
Digits:= 20: a:= n-> round(evalf(1/(int(x^(x^(x^n)), x=0..1)-1/2))): seq(a(n), n=0..44); # Alois P. Heinz, Mar 01 2019
-
Mathematica
f[n_] := Round[1/(NIntegrate[x^(x^(x^n)), {x, 0, 1}, WorkingPrecision -> 24] - 1/2)]; Array[f, 45, 0] (* Robert G. Wilson v, Mar 01 2019 *)
-
PARI
A322009(n)=1\/intnum(x=0, 1, x^x^x^n-x)
Comments