cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A322009 1/(Integral_{x=0..1} x^(x^(x^n)) dx - 1/2), rounded to the nearest integer.

Original entry on oeis.org

4, 14, 33, 64, 110, 174, 260, 369, 506, 672, 872, 1108, 1382, 1699, 2061, 2472, 2933, 3448, 4021, 4653, 5349, 6110, 6941, 7844, 8822, 9878, 11015, 12237, 13545, 14943, 16435, 18023, 19709, 21498, 23392, 25394, 27507, 29734, 32079, 34543, 37131, 39844, 42687, 45662, 48772
Offset: 0

Views

Author

M. F. Hasler, Mar 01 2019

Keywords

Comments

Linked to the problem of sorting parenthesized expressions (x^x....^x) (cf. A000081 and A222379, A222380) according to the value of their integral from 0 to 1: This value is minimal, for a given number n of x's, for G[n](x) := x^((...(x^x)^x....)^x) = x^(x^(x^(n-2))), which converges pointwise to x^(x^0) = x^1 = x for all x in [0,1], as n -> oo. The corresponding integrals therefore tend to 1/2 as n -> oo. This sequence is a convenient measure of the distance of these integrals from 1/2.
See A322008 for the maximal values of such integrals.

Examples

			For n=0, Integral_{x=0..1} x^(x^(x^0)) dx = Integral_{x=0..1} x^x dx = A083648 = 0.7834..., and 1/(0.7834... - 0.5) = 1 / 0.2834... = 3.528..., so a(0) = round(3.528...) = 4.
For n=1, Integral_{x=0..1} x^(x^(x^1)) dx = Integral_{x=0..1} x^(x^x) dx = 0.5731..., and 1/(0.5731... - 0.5) = 1 / 0.0731... = 13.67..., so a(1) = round(13.67...) = 14.
		

Crossrefs

Programs

  • Maple
    Digits:= 20:
    a:= n-> round(evalf(1/(int(x^(x^(x^n)), x=0..1)-1/2))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Mar 01 2019
  • Mathematica
    f[n_] := Round[1/(NIntegrate[x^(x^(x^n)), {x, 0, 1}, WorkingPrecision -> 24] - 1/2)]; Array[f, 45, 0] (* Robert G. Wilson v, Mar 01 2019 *)
  • PARI
    A322009(n)=1\/intnum(x=0, 1, x^x^x^n-x)

A347345 Decimal expansion of 1 / 1^1 + 1 / (1^1 * 2^2) + 1 / (1^1 * 2^2 * 3^3) + 1 / (1^1 * 2^2 * 3^3 * 4^4) + ...

Original entry on oeis.org

1, 2, 5, 9, 2, 9, 5, 4, 3, 9, 8, 1, 5, 0, 6, 2, 8, 8, 7, 6, 9, 1, 3, 5, 9, 6, 4, 9, 8, 8, 3, 7, 3, 5, 0, 9, 2, 6, 3, 1, 1, 4, 5, 7, 5, 1, 8, 4, 2, 1, 0, 4, 2, 1, 2, 9, 0, 5, 8, 0, 1, 0, 6, 4, 3, 8, 5, 6, 4, 2, 1, 8, 5, 2, 4, 7, 9, 1, 6, 7, 8, 6, 3, 0, 3, 7, 8, 4, 4, 7, 5, 5, 0, 3, 7, 2, 0, 7, 3, 8, 1, 0, 0, 9, 6, 3, 4, 2, 6, 2, 2, 3, 3, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 28 2021

Keywords

Comments

This constant is irrational (Stucky, 2016). - Amiram Eldar, Apr 30 2023

Examples

			1.2592954398150628876913596498837350926311457518421...
		

Crossrefs

Programs

  • Mathematica
    With[{m = 105}, RealDigits[N[Sum[1/Hyperfactorial[n], {n, 1, Infinity}], m + 2], 10, m][[1]]] (* Amiram Eldar, Apr 30 2023 *)
    RealDigits[Total[Table[1/Times@@(Range[n]^Range[n]),{n,30}]],10,120][[1]] (* Harvey P. Dale, Oct 07 2023 *)

A347352 Decimal expansion of 1 / 1^1 - 1 / (1^1 * 2^2) + 1 / (1^1 * 2^2 * 3^3) - 1 / (1^1 * 2^2 * 3^3 * 4^4) + ...

Original entry on oeis.org

7, 5, 9, 2, 2, 3, 1, 0, 1, 8, 5, 1, 6, 0, 3, 7, 7, 9, 5, 7, 7, 7, 5, 9, 0, 4, 4, 9, 5, 5, 8, 4, 5, 5, 9, 5, 9, 1, 3, 3, 5, 2, 4, 0, 2, 1, 8, 4, 4, 8, 1, 9, 8, 3, 6, 0, 9, 5, 2, 0, 8, 1, 4, 5, 5, 5, 0, 3, 7, 8, 6, 2, 2, 8, 6, 4, 0, 9, 4, 5, 3, 7, 4, 7, 6, 6, 7, 6, 9, 7, 6, 7, 3, 9, 5, 3, 9, 8, 2, 7, 7, 7, 6, 5, 6, 1, 4, 7, 4, 1, 8, 8, 0, 8, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 28 2021

Keywords

Examples

			0.759223101851603779577759044955845595913352402184...
		

Crossrefs

Programs

  • Mathematica
    With[{m = 105}, RealDigits[N[Sum[(-1)^(n + 1)/Hyperfactorial[n], {n, 1, Infinity}], m + 2], 10, m][[1]]] (* Amiram Eldar, Apr 30 2023 *)

A350149 Triangle read by rows: T(n, k) = n^(n-k)*k!.

Original entry on oeis.org

1, 1, 1, 4, 2, 2, 27, 9, 6, 6, 256, 64, 32, 24, 24, 3125, 625, 250, 150, 120, 120, 46656, 7776, 2592, 1296, 864, 720, 720, 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040, 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320
Offset: 0

Views

Author

Robert B Fowler, Dec 27 2021

Keywords

Comments

T(n,k) are the denominators in a double summation power series for the definite integral of x^x. First expand x^x = exp(x*log(x)) = Sum_{n>=0} (x*log(x))^n/n!, then integrate each of the terms to get the double summation for F(x) = Integral_{t=0..x} t^t = Sum_{n>=1} (Sum_{k=0..n-1} (-1)^(n+k+1)*x^n*(log(x))^k/T(n,k)).
This is a definite integral, because lim {x->0} F(x) = 0.
The value of F(1) = 0.78343... = A083648 is known humorously as the Sophomore's Dream (see Borwein et al.).

Examples

			Triangle T(n,k) begins:
--------------------------------------------------------------------------
n/k         0        1       2       3      4      5      6      7      8
--------------------------------------------------------------------------
0  |        1,
1  |        1,       1,
2  |        4,       2,      2,
3  |       27,       9,      6,      6,
4  |      256,      64,     32,     24,    24,
5  |     3125,     625,    250,    150,   120,   120,
6  |    46656,    7776,   2592,   1296,   864,   720,   720,
7  |   823543,  117649,  33614,  14406,  8232,  5880,  5040,  5040,
8  | 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320.
...
		

References

  • Borwein, J., Bailey, D. and Girgensohn, R., Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters 2004.
  • William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton NJ 2005.

Crossrefs

Cf. A000312 (first column), A000169 (2nd column), A003308 (3rd column excluding first term), A000142 (main diagonal), A000142 (2nd diagonal excluding first term), A112541 (row sums).
Values of the integral: A083648, A073009.

Programs

  • Magma
    A350149:= func< n,k | n^(n-k)*Factorial(k) >;
    [A350149(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2022
    
  • Maple
    T := (n, k) -> n^(n - k)*k!:
    seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jan 07 2022
  • Mathematica
    T[n_, k_]:= n^(n-k)*k!; Table[T[n, k], {n, 0,12}, {k,0,n}]//Flatten (* Amiram Eldar, Dec 27 2021 *)
  • SageMath
    def A350149(n,k): return n^(n-k)*factorial(k)
    flatten([[A350149(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 31 2022

Formula

T(n, 0) = A000312(n).
T(n, 1) = A000169(n).
T(n, 2) = A003308(n), n >= 2.
Sum_{k=0..n} T(n, k) = A112541(n).
T(n, n) = A000142(n).
T(n, n-1) = A000142(n), n >= 1.
T(n,k) = A061711(n) * (n+1) / A350297(n+1,k). - Robert B Fowler, Jan 11 2022

A137420 Continued fraction expansion of Sum_{n=1..infinity} (-1)^(n+1)/n^n = Integral_{x=0..1} x^(x) dx.

Original entry on oeis.org

0, 1, 3, 1, 1, 1, 1, 1, 1, 2, 4, 7, 2, 1, 2, 1, 1, 1, 2, 1, 14, 1, 1, 2, 4, 1, 120, 1, 3, 1, 4, 1, 2, 6, 1, 1, 5, 1, 1, 5, 2, 1, 11, 2, 409, 1, 1, 7, 3, 2, 1, 11, 142, 1, 3, 1, 44, 1, 1, 27, 1, 3, 1, 1, 100, 1, 39, 14, 2, 16, 1, 1, 11, 1, 2, 29, 2, 1, 1, 1, 3, 4, 1, 1, 1, 12, 1, 1, 118, 7, 9, 1, 1, 6
Offset: 0

Views

Author

Jani Melik, Apr 16 2008

Keywords

Crossrefs

Cf. A083648 (decimal expansion).

Programs

  • Maple
    sd1 := proc(n) local i, tren; tren := 0: for i from 1 to n do tren := (-1)^(i+1)*(1/i^(i)) + tren: od; RETURN(tren); end: numtheory[cfrac] (sd1(300),150,'quotients');

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A209059 Decimal expansion of the triple integral Integral_{z = 0..1} Integral_{y = 0..1} Integral_{x = 0..1} (x*y*z)^(x*y*z) dx dy dz.

Original entry on oeis.org

8, 3, 4, 9, 3, 0, 1, 1, 0, 6, 3, 6, 2, 2, 3, 5, 9, 3, 5, 1, 0, 3, 3, 8, 6, 9, 0, 7, 7, 8, 2, 2, 1, 6, 6, 0, 2, 8, 6, 6, 0, 3, 2, 2, 5, 0, 1, 2, 2, 4, 4, 3, 5, 5, 1, 3, 7, 4, 7, 8, 3, 9, 9, 2, 0, 8, 3, 5, 7, 6, 6, 5, 2, 3, 9, 4, 5, 6, 4, 1, 1, 2, 1, 2, 8, 1, 9, 4, 4, 8, 6, 3, 2, 4, 5, 6, 8, 9, 2, 7, 0, 0, 6
Offset: 0

Views

Author

Peter Bala, Mar 04 2012

Keywords

Comments

The double integral Integral_{y = 0..1} Integral_{x = 0..1} (x*y)^(x*y) dx dy equals Integral_{x = 0..1} x^x dx, which is listed as A083648.

Examples

			0.83493011063622359351...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; 1/2*NSum[ (-1)^(n+1)*(1/n^n + 1/n^(n+1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 100] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013, from formula *)

Formula

The triple integral is most conveniently estimated from the identity Integral_{z = 0..1} Integral_{y = 0..1} Integral_{z = 0..1} (x*y*z)^(x*y*z) dx dy dz = (1/2)*Sum_{n >= 1} (-1)^(n+1)*(1/n^n + 1/n^(n+1)).

A209060 Decimal expansion of the triple integral Integral_{z = 0..1} Integral_{y = 0..1} Integral_{x = 0..1} 1/(x*y*z)^(x*y*z) dx dy dz.

Original entry on oeis.org

1, 2, 1, 4, 8, 3, 7, 9, 9, 6, 0, 1, 7, 1, 6, 2, 7, 0, 0, 6, 9, 1, 1, 2, 0, 5, 2, 4, 8, 0, 2, 4, 2, 1, 2, 2, 2, 2, 3, 8, 2, 7, 3, 8, 8, 4, 9, 0, 5, 5, 6, 1, 1, 9, 9, 9, 4, 6, 1, 4, 2, 2, 9, 5, 2, 1, 1, 1, 4, 1, 3, 7, 5, 2, 4, 0, 0, 3, 7, 7, 1, 0, 5, 9, 1, 2, 1, 2, 4, 0, 0, 7, 7, 8, 8, 7, 4, 2, 1, 8, 3, 8, 1
Offset: 1

Views

Author

Peter Bala, Mar 04 2012

Keywords

Comments

Cf. A209059. The double integral Integral_{y = 0..1} Integral_{x = 0..1} 1/(x*y)^(x*y) dx dy equals Integral_{x = 0..1} 1/x^x dx, which is listed as A073009.

Examples

			1.21483799601716270069...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; 1/2*NSum[ (1/n^n + 1/n^(n+1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 100] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013, from formula *)
  • PARI
    default( realprecision, 105); v = Vec( Str( suminf( n=1, n^-n + n^-(n+1)) / 20)); for( n=3, 105, print1( v[n],",")); /* Michael Somos, Mar 07 2012 */

Formula

The triple integral is most conveniently estimated from the identity Integral_{z = 0..1} Integral_{y = 0..1} Integral_{x = 0..1} 1/(x*y*z)^(x*y*z) dx dy dz = 1/2*Sum_{n = 1..oo} (1/n^n + 1/n^(n+1)).

A253300 Decimal expansion of integral_{x=0..1} x^sqrt(x) dx.

Original entry on oeis.org

6, 5, 8, 5, 8, 2, 3, 5, 4, 1, 0, 9, 0, 9, 3, 5, 6, 5, 4, 6, 9, 6, 5, 6, 8, 5, 3, 4, 0, 3, 6, 4, 4, 1, 7, 0, 1, 5, 6, 4, 0, 5, 8, 9, 2, 7, 7, 3, 3, 6, 2, 4, 6, 1, 1, 3, 3, 7, 5, 8, 6, 2, 6, 4, 2, 6, 5, 4, 6, 7, 1, 7, 8, 8, 7, 9, 8, 7, 1, 9, 5, 7, 8, 8, 8, 1, 4, 1, 6, 4, 6, 8, 5, 9, 1, 1, 3, 9, 0, 2, 9, 8, 6, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Dec 30 2014

Keywords

Examples

			0.6585823541090935654696568534036441701564...
		

References

  • Paul J. Nahin, Inside Interesting Integrals, Springer 2014, ISBN 978-1493912766.

Crossrefs

Programs

  • Mathematica
    NIntegrate[x^Sqrt[x], {x, 0, 1}, WorkingPrecision -> 110] // RealDigits[#, 10, 105]& // First
  • PARI
    intnum(x=0,1, x^sqrt(x)) \\ Michel Marcus, Dec 30 2014

Formula

Equals sum_{n >= 1} (-1)^(n + 1)*(2/(n + 1))^n.

A262974 Decimal expansion of Sum_{n > 0} (-1/n)^(n-1).

Original entry on oeis.org

5, 9, 6, 9, 6, 5, 5, 5, 5, 5, 7, 8, 4, 8, 3, 2, 2, 4, 5, 7, 9, 1, 2, 7, 3, 6, 6, 4, 9, 2, 5, 6, 9, 1, 8, 3, 1, 6, 4, 5, 8, 8, 3, 7, 5, 8, 4, 1, 1, 3, 6, 6, 9, 6, 0, 2, 1, 7, 9, 9, 0, 1, 2, 5, 1, 6, 6, 9, 7, 8, 6, 1, 3, 3, 2, 4, 2, 3, 4, 1, 2, 7, 9, 1, 0, 6, 6, 0, 5, 0, 2, 7, 8, 6, 4, 9, 3, 6, 2, 5, 4, 6, 8, 9, 5
Offset: 0

Views

Author

Andrew Penton, Oct 05 2015

Keywords

Examples

			0.5969655555784832245791273664925691831645883...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1/n)^(n-1), n=1..infinity), 120); # Vaclav Kotesovec, Oct 15 2015
  • Mathematica
    Sum[(-1/n)^(n-1),{n,1,Infinity}]
  • PARI
    sumalt(n=1, (-1/n)^(n-1)) \\ Michel Marcus, Oct 06 2015

Formula

Equals 1 - Integral_{x = 0..1} x^(x+1) dx. - Peter Bala, Jul 21 2022

Extensions

More terms from Michel Marcus, Oct 15 2015

A279020 a(n) = unreduced numerator in Sum_{k=1..n} (-1)^(k-1)/k^k.

Original entry on oeis.org

0, 1, 3, 85, 21652, 67690148, 3158065145088, 2600806474859606784, 43634288683151793919033344, 16904817514490272003065681518985216, 169048175123324778807714958980684133171200000, 48231417258392463006590622244366007983063473271603200000
Offset: 0

Views

Author

Daniel Suteu, Dec 03 2016

Keywords

Crossrefs

Cf. A083648.

Programs

  • PARI
    sum(k=1, n, (-1)^(k-1)/k^k) * prod(k=1, n, k^k)

Formula

a(n) ~ A083648 * A002109(n).
a(0) = 0, a(n) = n^n * a(n-1) + (-1)^(n-1) * A002109(n-1).
Previous Showing 11-20 of 23 results. Next