cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006012 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.

Original entry on oeis.org

1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then a(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...). (End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N=2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
... (End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
Consider a stack of pancakes of height n, where the only allowed operation is reversing the top portion of the stack. First, perform a series of reversals of decreasing sizes, followed by a series of reversals of increasing sizes. The number of distinct permutations of the initial stack that can be reached through these operations is a(n). - Thomas Baruchel, May 12 2025
Number of permutations of [n] that are correctly sorted after performing one left-to-right pass and one right-to-left pass of the cocktail sort. - Thomas Baruchel, May 16 2025

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006012 n = a006012_list !! n
    a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
    (map (* 2) a006012_list)
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
    with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..7); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{4,-2},{1,2},50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)),{n,50}]]] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    l = [1, 2]
    for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
    print(l)  # Indranil Ghosh, Jul 02 2017
    
  • SageMath
    A006012=BinaryRecurrenceSequence(4,-2,1,2)
    print([A006012(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025

Formula

G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Limit_{n -> oo} a(n)/a(n-1) = 2 + sqrt(2). - Zak Seidov, Oct 12 2002
From Paul Barry, May 08 2003: (Start)
Binomial transform of A001333.
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
From G. C. Greubel, Aug 27 2025: (Start)
a(n) = 2^((n-2)/2)*( (n+1 mod 2)*A002203(n) + 2*sqrt(2)*(n mod 2)*A000129(n) ).
a(n) = 2^(n/2)*ChebyshevT(n, sqrt(2)). (End)

A083972 Smallest palindromic prime containing exactly n 1's.

Original entry on oeis.org

313, 11, 18181, 11311, 1311131, 1114111, 110111011, 111181111, 11115151111, 1011117111101, 1110111110111, 1111118111111, 111111212111111, 111111151111111, 11121111111112111, 1011111110111111101, 1111111611161111111, 111110111171111011111, 1111111111111111111, 111111111161111111111, 11111111181118111111111, 1101111111119111111111011
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    digOfInterest = 1;
    primes = {};
    While[Length[primes] < 6,
      n = Length[primes] + 1;
      i = 0;
      While[Length[primes] != n,
       i++;
       dig = IntegerDigits[Prime[i]];
       If[
        (dig == Reverse[dig]) &&
         (Count[dig, digOfInterest] == n),
        AppendTo[primes, FromDigits[dig]];
        ];
       ];
      ];
    primes
    (* Kevin Southwick, Jul 25 2015 *)

Extensions

More terms from David Wasserman, Dec 06 2004
Corrected and extended by Giovanni Resta, Feb 08 2006
2 more terms from Erich Friedman, Mar 23 2008

A083973 Smallest palindromic prime containing exactly n 2's.

Original entry on oeis.org

2, 12421, 72227, 1221221, 3222223, 122232221, 322222223, 12222122221, 1202222222021, 1222227222221, 9222222222229, 122222232222221, 32222322222322223, 72222222422222227, 1202222222222222021, 1222222226222222221, 125222222222222222521, 722222222202222222227
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 2; i = 1;
     While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 6}]  (* Robert Price, Mar 25 2019 *)

Extensions

Corrected and extended by Giovanni Resta, Feb 08 2006

A083976 Smallest palindromic prime containing exactly n 5's.

Original entry on oeis.org

5, 15451, 15551, 1550551, 154555451, 155535551, 355555553, 35555155553, 75555555557, 1555550555551, 152555555555251, 10555555355555501, 15505555555550551, 35555555755555553, 1555555055505555551, 1555555551555555551, 115555555555555555511
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 5; i = 1;
     While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 6}]  (* Robert Price, Mar 25 2019 *)

Extensions

More terms from Giovanni Resta, Feb 08 2006

A083977 Smallest palindromic prime containing exactly n 6's.

Original entry on oeis.org

10601, 16061, 16661, 1660661, 7666667, 166636661, 10666666601, 36666766663, 1766666666671, 3666662666663, 1666666666661, 366666656666663, 11666666666666611, 36666666766666663, 16666666666666661, 3666666665666666663, 1666666666666666661, 166666666636666666661
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 6; i = 1;
     While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 5}]  (* Robert Price, Mar 25 2019 *)

Extensions

More terms from Giovanni Resta, Feb 08 2006

A083979 Smallest palindromic prime containing exactly n 8's.

Original entry on oeis.org

181, 18181, 78887, 1880881, 9888889, 188868881, 188888881, 18888588881, 1488888888841, 7888886888887, 3888888888883, 188888858888881, 188888888888881, 38888888088888883, 1688888888888888861, 3888888882888888883, 128888888888888888821
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 8; i = 1;
    While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 5}]  (* Robert Price, Mar 25 2019 *)
    Module[{prs=Select[Prime[Range[105*10^5]],PalindromeQ]},Table[ SelectFirst[ prs,DigitCount[ #,10,8]==n&],{n,6}]] (* The program generates the first 6 terms of the sequence. *) (* Harvey P. Dale, May 11 2022 *)

Extensions

Corrected and extended by Giovanni Resta, Feb 08 2006

A083980 Smallest palindromic prime containing exactly n 9's.

Original entry on oeis.org

191, 919, 19991, 1993991, 9199919, 199909991, 199999991, 90999599909, 95999999959, 99999199999, 9599999999959, 199999959999991, 959999999999959, 39999999299999993, 94999999999999949, 99999999299999999, 9299999999999999929, 9999999992999999999
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 9; i = 1;
     While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 5}]  (* Robert Price, Mar 25 2019 *)

Extensions

Corrected and extended by Giovanni Resta, Feb 08 2006

A083981 Smallest palindromic prime containing exactly n zeros.

Original entry on oeis.org

101, 10301, 1300031, 1003001, 100404001, 100030001, 10060006001, 10000500001, 1000030300001, 1000008000001, 140000000000041, 300000020000003, 10000003030000001, 10000000500000001, 1000000400040000001, 1000000008000000001, 100000000303000000001
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 0; i = 1;
     While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 5}]  (* Robert Price, Mar 25 2019 *)

Extensions

Corrected and extended by Giovanni Resta, Feb 08 2006

A083974 Smallest palindromic prime containing exactly n 3's.

Original entry on oeis.org

3, 313, 13331, 33533, 1333331, 3331333, 323333323, 13333633331, 31333333313, 1333335333331, 3233333333323, 133333353333331, 332333333333233, 333333313333333, 33233333333333233, 1333333336333333331, 3333333313133333333, 133333333383333333331
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 3; i = 1;
     While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 6}]  (* Robert Price, Mar 25 2019 *)

Extensions

More terms from Giovanni Resta, Feb 08 2006

A083975 Smallest palindromic prime containing exactly n 4's.

Original entry on oeis.org

11411, 14341, 1464641, 1447441, 1444441, 144404441, 14244444241, 34444344443, 74444444447, 1444447444441, 3444444444443, 144444454444441, 14144444444444141, 34444444044444443, 1414444444444444141, 1444444447444444441, 104444444444444444401
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[d = 4; i = 1;
     While[ x = IntegerDigits[Prime[i]];
      x != Reverse[x] || Count[x, d] != n , i++];
    FromDigits[x], {n, 1, 6}]  (* Robert Price, Mar 25 2019 *)

Extensions

More terms from Ray G. Opao, Sep 20 2004
Corrected and extended by Giovanni Resta, Feb 08 2006
Showing 1-10 of 11 results. Next