cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A105826 a(n) = sigma(n) (mod 7).

Original entry on oeis.org

1, 3, 4, 0, 6, 5, 1, 1, 6, 4, 5, 0, 0, 3, 3, 3, 4, 4, 6, 0, 4, 1, 3, 4, 3, 0, 5, 0, 2, 2, 4, 0, 6, 5, 6, 0, 3, 4, 0, 6, 0, 5, 2, 0, 1, 2, 6, 5, 1, 2, 2, 0, 5, 1, 2, 1, 3, 6, 4, 0, 6, 5, 6, 1, 0, 4, 5, 0, 5, 4, 2, 6, 4, 2, 5, 0, 5, 0, 3, 4, 2, 0, 0, 0, 3, 6, 1, 5, 6, 3, 0, 0, 2, 4, 1, 0, 0, 3, 2, 0, 4, 6, 6, 0, 3
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Cf. A000203.
Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).

Programs

  • Maple
    A105826:= n-> (numtheory[sigma](n) mod 7):
    seq (A105826(n), n=1..105); # Jani Melik, Jan 26 2011
  • Mathematica
    Mod[DivisorSigma[1,Range[110]],7] (* Harvey P. Dale, Jul 30 2021 *)
  • PARI
    a(n)=sigma(n)%7

A097011 Remainder of sigma(n) modulo 30.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 1, 18, 9, 20, 12, 2, 6, 24, 0, 1, 12, 10, 26, 0, 12, 2, 3, 18, 24, 18, 1, 8, 0, 26, 0, 12, 6, 14, 24, 18, 12, 18, 4, 27, 3, 12, 8, 24, 0, 12, 0, 20, 0, 0, 18, 2, 6, 14, 7, 24, 24, 8, 6, 6, 24, 12, 15, 14, 24, 4, 20, 6, 18, 20, 6, 1, 6
Offset: 1

Views

Author

Labos Elemer, Aug 19 2004

Keywords

Crossrefs

Programs

Formula

a(n) = mod(A000203(n), 30).

A097012 a(n) = sigma(n) mod 210.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Labos Elemer, Aug 19 2004

Keywords

Comments

Agrees with A000203(n) for n <= 89; sigma(90) = 234. - Omar E. Pol, Feb 02 2013
This sequence is not multiplicative. For example, at a(84) = 14 which is not a(3)*a(4)*a(7) = 224. - Andrew Howroyd, Aug 23 2018

Crossrefs

Programs

Formula

a(n) = A000203(n) mod 210.

A097014 Smallest x such that sigma(x) mod 210 = n.

Original entry on oeis.org

104, 1, 211, 2, 3, 8311689, 5, 4, 7, 3698, 399, 130321, 6, 9, 13, 8, 1477, 2458624, 10, 725904, 19, 676, 6751, 18766224, 14, 52707600, 489, 24649, 12, 220433409, 29, 16, 21, 1250, 2779, 3694084, 22, 5184, 37, 18, 27, 1382976, 20, 729, 43, 128, 217
Offset: 0

Views

Author

Labos Elemer, Aug 19 2004

Keywords

Comments

Compare with A084303 and A097013.
Row 210 of A074625 (apart from different ordering). - Michel Marcus, Dec 19 2013

Examples

			Several numbers belonging to odd residues are either large squares or twice-squares.
E.g.: r = n = 209: a(209) = 36324729 = 6027^2, sigma(6027^2) = 210*172974 + 209.
Full set is easily available running through squares or twice squares.
		

Crossrefs

A074629 Duplicate of A067051.

Original entry on oeis.org

2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

Square terms are in A074216. Nonsquare terms appear to be A001105 except {0}. - Michel Marcus, Dec 26 2013
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015

Examples

			n=32: sigma(32) = 63 = 6*10 + 3.
		

Crossrefs

Appears to be the same sequence as A067051. - Ralf Stephan, Aug 18 2004

Programs

  • Magma
    [n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
  • Mathematica
    Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    isok(n) = (sigma(n) % 6) == 3; \\ Michel Marcus, Dec 26 2013
    

Formula

A000203(n) mod 6 = 3.
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020

A097015 Smallest k such that sigma(k) + 1 is divisible by primorial(n).

Original entry on oeis.org

1, 1, 2401, 2614689, 36324729, 36324729, 2411675443849, 2411675443849, 12361036649679601
Offset: 0

Views

Author

Labos Elemer, Aug 19 2004

Keywords

Comments

10^19 < a(9) <= 725298909352131113041. Terms a(3) through a(8) all have the prime signature p^4*q^2*r^2. Any x such that sigma(x) = -1 (mod 30) must have at least eight prime factors. However, for all n, there are solutions with fewer than three distinct prime factors. More generally, for any k > 1, let p be a prime of the form mk+1; then sigma(p^(k-2)) = -1 (mod k). For a(9), 725298909352131113041 is the least solution with eight prime factors. I have not been able to rule out a smaller solution with more prime factors. - David Wasserman, Dec 14 2007

Crossrefs

Formula

a(n) = A233929(A002110(n)). - Andrew Howroyd, Dec 12 2024

Extensions

More terms from David Wasserman, Dec 14 2007
a(0)=1 prepended by Andrew Howroyd, Dec 12 2024

A097013 Smallest x such that sigma(x) mod 30 = n.

Original entry on oeis.org

24, 1, 21, 2, 3, 923521, 5, 4, 7, 18, 27, 2401, 6, 9, 13, 8, 217, 9604, 10, 1089, 19, 98, 91, 21609, 14, 14641, 28, 49, 12, 2614689
Offset: 0

Views

Author

Labos Elemer, Aug 19 2004

Keywords

Comments

Compare with A084303.
Row 30 of A074625 (apart from different ordering). - Michel Marcus, Dec 19 2013

Crossrefs

Programs

  • Mathematica
    t=Table[Mod[DivisorSigma[1, w], 30], {w, 1, 2700000}]; Table[Min[Flatten[Position[t, j]]], {j, 0, 29}]

A105853 a(n) = sigma(n) (mod 10), i.e., unit's digit of sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 2, 8, 5, 3, 8, 2, 8, 4, 4, 4, 1, 8, 9, 0, 2, 2, 6, 4, 0, 1, 2, 0, 6, 0, 2, 2, 3, 8, 4, 8, 1, 8, 0, 6, 0, 2, 6, 4, 4, 8, 2, 8, 4, 7, 3, 2, 8, 4, 0, 2, 0, 0, 0, 0, 8, 2, 6, 4, 7, 4, 4, 8, 6, 6, 4, 2, 5, 4, 4, 4, 0, 6, 8, 0, 6, 1, 6, 4, 4, 8, 2, 0, 0, 0, 4, 2, 8, 8, 4, 0, 2, 8, 1, 6, 7, 2, 6, 4, 0, 2
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8), A105852 (k=9), A105853 (k=10).

Programs

Formula

a(n) = A010879(A000203(n)). - Michel Marcus, Jul 26 2017

A084302 Remainder of tau(n) modulo 6.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 0, 2, 4, 4, 5, 2, 0, 2, 0, 4, 4, 2, 2, 3, 4, 4, 0, 2, 2, 2, 0, 4, 4, 4, 3, 2, 4, 4, 2, 2, 2, 2, 0, 0, 4, 2, 4, 3, 0, 4, 0, 2, 2, 4, 2, 4, 4, 2, 0, 2, 4, 0, 1, 4, 2, 2, 0, 4, 2, 2, 0, 2, 4, 0, 0, 4, 2, 2, 4, 5, 4, 2, 0, 4, 4, 4, 2, 2, 0, 4, 0, 4, 4, 4, 0, 2, 0, 0, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 27, 236, 2275, 22166, 220070, 2195376, 21933228, 219259514, 2192385128, 21923168052, ... . Conjecture: the asymptotic mean of this sequence is 3*zeta(3)/zeta(2) = 3 * A253905 = 2.192288... . The conjecture is true if A211337 and A211338 have an equal asymptotic density (see also A059269). - Amiram Eldar, Jul 11 2024

Crossrefs

Programs

Formula

a(n) = A000005(n) modulo 6.

A097017 a(n) = sigma(5*n) modulo 6.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Labos Elemer, Aug 23 2004

Keywords

Comments

a(n) = 0 if A112765(n) is even. - Robert Israel, Feb 27 2018

Crossrefs

Programs

  • Maple
    f:= n -> numtheory:-sigma(5*n) mod 6;
    map(f, [$1.100]); # Robert Israel, Feb 27 2018
  • Mathematica
    Mod[#,6]&/@DivisorSigma[1,5*Range[110]] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n) = sigma(5*n) % 6; \\ Michel Marcus, Mar 08 2014

Formula

a(n) = A084301(5*n).

Extensions

Definition clarified by Harvey P. Dale, Jan 14 2019
Previous Showing 11-20 of 24 results. Next