cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A275387 Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2016

Keywords

Comments

Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...

Examples

			a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    x:=divisors(n):n0:=nops(x):it:=0:
    for i from 1 to n0 do:
      for j from i+1 to n0 do:
       if gcd(x[i],x[j])>1
        then
        it:=it+1:
        else
       fi:
      od:
    od:
      printf(`%d, `,it):
    od:
  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
  • PARI
    a(n)=my(d=divisors(n)); sum(i=2,#d, sum(j=1,i-1, gcd(d[i],d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    a(n)=my(f=factor(n)[,2],t=prod(i=1,#f,f[i]+1)); t*(t-1)/2 - (prod(i=1,#f,2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1Wesley Ivan Hurt, Jan 01 2021

A086975 Numbers of the form p^2 * q * r with primes p < q < r.

Original entry on oeis.org

60, 84, 132, 140, 156, 204, 220, 228, 260, 276, 308, 315, 340, 348, 364, 372, 380, 444, 460, 476, 492, 495, 516, 532, 564, 572, 580, 585, 620, 636, 644, 693, 708, 732, 740, 748, 765, 804, 812, 819, 820, 836, 852, 855, 860, 868, 876, 884, 940, 948, 988
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 25 2003

Keywords

Crossrefs

Subsequence of A086974 and of A085987.

Programs

  • Mathematica
    Select[Range[1000], FactorInteger[#][[;;, 2]] == {2, 1, 1} &] (* Amiram Eldar, Sep 15 2024 *)
  • PARI
    is(k) = factor(k)[, 2] == [2, 1, 1]~; \\ Amiram Eldar, Sep 15 2024

Formula

A001221(a(n)) = 3.
A001222(a(n)) = 4.
A020639(a(n))^2 divides a(n).
A000005(a(n)) = 12. - Amiram Eldar, Sep 15 2024

A179746 Numbers of the form p^4*q^2*r^2 where p, q, and r are distinct primes.

Original entry on oeis.org

3600, 7056, 8100, 15876, 17424, 19600, 22500, 24336, 39204, 41616, 48400, 51984, 54756, 67600, 76176, 86436, 93636, 94864, 99225, 115600, 116964, 121104, 122500, 132496, 138384, 144400, 171396, 197136, 211600, 226576, 240100, 242064, 245025
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that tau(k^2)/tau(k) = 5 where tau(n) is the number of divisors of n (A000005). - Bernard Schott, Nov 27 2020

Crossrefs

Subsequence of A217584.
Cf. A189988 (tau(k^2)/tau(k) = 3).

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,4}; Select[Range[200000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/4), t1=p^4;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A179746(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**2)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))-primepi(integer_nthroot(x,4)[0])
        return bisection(f,n,n)**2 # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = (P(2)^2*P(4) - P(4)^2)/2 - P(2)*P(6) + P(8) = 0.00125114..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
a(n) = A085987(n)^2. - R. J. Mathar, May 05 2023

A356413 Numbers with an equal sum of the even and odd exponents in their prime factorizations.

Original entry on oeis.org

1, 60, 84, 90, 126, 132, 140, 150, 156, 198, 204, 220, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 444, 460, 476, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 726, 732, 735
Offset: 1

Views

Author

Amiram Eldar, Aug 06 2022

Keywords

Comments

Numbers k such that A350386(k) = A350387(k).
A085987 is a subsequence. Terms that are not in A085987 are 1, 2160, 3024, ...

Examples

			60 is a term since A350386(60) = A350387(60) = 2.
		

Crossrefs

Subsequence of A028260.
Subsequences: A085987, A179698, A190109, A190110.
Similar sequences: A048109, A187039, A348097.

Programs

  • Mathematica
    f[p_, e_] := (-1)^e*e; q[1] = True; q[n_] := Plus @@ f @@@ FactorInteger[n] == 0; Select[Range[1000], q]
  • PARI
    isok(n) = {my(f = factor(n)); sum(i = 1, #f~, (-1)^f[i,2]*f[i,2]) == 0};

A336530 Number of triples of divisors d_i < d_j < d_k of n such that gcd(d_i, d_j, d_k) > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 4, 0, 5, 0, 5, 0, 0, 0, 23, 0, 0, 1, 5, 0, 12, 0, 10, 0, 0, 0, 36, 0, 0, 0, 23, 0, 12, 0, 5, 5, 0, 0, 62, 0, 5, 0, 5, 0, 23, 0, 23, 0, 0, 0, 87, 0, 0, 5, 20, 0, 12, 0, 5, 0, 12, 0, 120, 0, 0, 5, 5, 0, 12, 0, 62, 4
Offset: 1

Views

Author

Michel Lagneau, Oct 04 2020

Keywords

Comments

Number of elements in the set {(x, y, z): x|n, y|n, z|n, x < y < z, GCD(x, y, z) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n) = 0 for n = 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, ... (Numbers with at most 2 prime factors (counted with multiplicity). See A037143);
a(n) = 1 for n = 8, 27, 125, 343, 1331, 2197, 4913,... (cubes of primes. See A030078);
a(n) = 4 for n = 16, 81, 625, 2401, 14641, 28561, ... (prime(n)^4. See A030514);
a(n) = 5 for n = 12, 18, 20, 28, 44, 45, ... (Numbers which are the product of a prime and the square of a different prime (p^2 * q). See A054753);
a(n) = 12 for n = 30, 42, 66, 70, 78, 102, 105, 110,... (Sphenic numbers: products of 3 distinct primes. See A007304);
a(n) = 20 for n = 64, 729, 15625, 117649, ... (Numbers with 7 divisors. 6th powers of primes. See A030516);
a(n) = 23 for n = 24, 40, 54, 56, 88, 104, 135, 136, ... (Product of the cube of a prime (A030078) and a different prime. See A065036);
a(n) = 36 for n = 36, 100, 196, 225, 441, 484, 676,... (Squares of the squarefree semiprimes (p^2*q^2). See A085986);
a(n) = 62 for n = 48, 80, 112, 162, 176, 208, 272, ... (Product of the 4th power of a prime (A030514) and a different prime (p^4*q). See A178739);
a(n) = 87 for n = 60, 84, 90, 126, 132, 140, 150, 156, ... (Product of exactly four primes, three of which are distinct (p^2*q*r). See A085987);
a(n) = 120 for n = 72, 108, 200, 392, 500, 675, 968, ... (Numbers of the form p^2*q^3, where p,q are distinct primes. See A143610);
It is possible to continue with a(n) = 130, 235, 284, 289, 356, ...

Examples

			a(12) = 5 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j, d_k) > 1 for the 5 following triples of divisors: (2,4,6), (2,4,12), (2,6,12), (3,6,12) and (4,6,12).
		

Crossrefs

Cf. A275387.

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    it:=0:d:=divisors(n):n0:=nops(d):
      for i from 1 to n0-2 do:
       for j from i+1 to n0-1 do:
         for k from j+1 to n0 do:
        if igcd(d[i],d[j],d[k])> 1
           then
           it:=it+1:
           else
          fi:
         od:
         od:
         od:
        printf(`%d, `,it):
       od:
  • Mathematica
    Array[Count[GCD @@ # & /@ Subsets[Divisors[#], {3}], ?(# > 1 &)] &, 81] (* _Michael De Vlieger, Oct 05 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); sum(i=1, #d-2, sum (j=i+1, #d-1, sum (k=j+1, #d, gcd([d[i], d[j], d[k]]) > 1))); \\ Michel Marcus, Oct 31 2020
    
  • PARI
    a(n) = {my(f = factor(n), vp = vecprod(f[,1]), d = divisors(vp), res = 0);
    for(i = 2, #d, res-=binomial(numdiv(n/d[i]), 3)*(-1)^omega(d[i])); res} \\ David A. Corneth, Nov 01 2020

Extensions

Name clarified by editors, Oct 31 2020

A231122 Numbers k >= 0 such that 2^k is number of ways to write n as n = x*y, where x, y = squarefree numbers, 1 <= x <= n, 1 <= y <= n, or -1 if no such k exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 1, 1, 0, -1, 0, 1, -1, 0, 0, 2, 0, -1, 1, 1, 1, 0, 0, 1, 1, -1, 0, 2, 0, 0, 0, 1, 0, -1, 0, 0, 1, 0, 0, -1, 1, -1, 1, 1, 0, 1, 0, 1, 0, -1, 1, 2, 0, 0, 1, 2, 0, -1, 0, 1, 0, 0, 1, 2, 0, -1, -1, 1, 0, 1, 1
Offset: 1

Views

Author

Gerasimov Sergey, Nov 04 2013

Keywords

Examples

			1(1*1), 2(1*2), 3(1*3), 4(2*2), 5(1*5), 6(1*6, 2*3), 7(1*7), 8(-), 9(3*3), 10(1*10, 2*5), 11(1*11), 12(2*6), 13(1*13), 14(1*14, 2*7), 15(1*15, 3*5), 16(-), 17(1*17), 18(3*6), 19(1*19), 20(2*10), 21(1*21, 3*7), 22(1*22, 2*11), 23(1*23), 24(-), 25(5*5), 26(1*26, 2*13), 27(-).
		

Crossrefs

Cf. A046099(k<0), A130091(k<=0), A004709(k>=0), A230843(k=0), (A006881 U A085987 U ...)(k=1).

Programs

  • PARI
    a(n)=if(n==1,return(0)); my(f=factor(n)[,2]); if(vecmax(f)>2, return(-1)); max(sum(i=1,#f,2-f[i])-1, 0) \\ Charles R Greathouse IV, Nov 04 2013

Extensions

a(80) corrected by Charles R Greathouse IV, Nov 04 2013

A275345 Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.

Original entry on oeis.org

1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0

Views

Author

Mats Granvik, Jul 24 2016

Keywords

Comments

From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.

Examples

			{
{ 1},
{ 1, -1},
{-1, -1,  1},
{-1,  0,  2,  -1},
{ 0,  0,  2,  -3,  1},
{-1,  2,  1,  -5,  4,   -1},
{ 1, -3,  5,  -8,  9,   -5,   1},
{-1,  4, -4,  -5, 15,  -14,   6,  -1},
{ 0, -1,  6, -17, 29,  -31,  20,  -7,  1},
{ 0,  0,  2, -13, 36,  -55,  50, -27,  8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
		

Crossrefs

Programs

  • Mathematica
    Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]

A307341 Products of four primes, not all distinct.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376, 380, 414
Offset: 1

Views

Author

Kalle Siukola, Apr 02 2019

Keywords

Comments

Numbers with exactly four prime factors (counted with multiplicity) but fewer than four distinct prime factors.
Numbers n such that bigomega(n) = 4 and omega(n) < 4.

Crossrefs

Setwise difference of A014613 and A046386.
Union of A030514, A065036, A085986 and A085987.

Programs

  • PARI
    isok(n) = (bigomega(n) == 4) && (omega(n) < 4); \\ Michel Marcus, Apr 03 2019
  • Python
    import sympy
    def bigomega(n): return sympy.primeomega(n)
    def omega(n): return len(sympy.primefactors(n))
    print([n for n in range(1, 1000) if bigomega(n) == 4 and omega(n) < 4])
    

A343511 a(n) = 1 + Sum_{d|n, d < n} a(d)^2.

Original entry on oeis.org

1, 2, 2, 6, 2, 10, 2, 42, 6, 10, 2, 146, 2, 10, 10, 1806, 2, 146, 2, 146, 10, 10, 2, 23226, 6, 10, 42, 146, 2, 314, 2, 3263442, 10, 10, 10, 42814, 2, 10, 10, 23226, 2, 314, 2, 146, 146, 10, 2, 542731938, 6, 146, 10, 146, 2, 23226, 10, 23226, 10, 10, 2, 141578, 2, 10, 146, 10650056950806, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Comments

a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, Apr 24 2021

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(d)^2, d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..65);  # Alois P. Heinz, Apr 17 2021
  • Mathematica
    a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}]
  • PARI
    lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (dMichel Marcus, Apr 18 2021
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # Chai Wah Wu, Apr 17 2021
    

Formula

G.f.: x / (1 - x) + Sum_{n>=1} a(n)^2 * x^(2*n) / (1 - x^n).
a(p^k) = A007018(k) for p prime.
From Bernard Schott, Apr 24 2021: (Start)
a(A006881(n)) = 10 for signature [1, 1].
a(A054753(n)) = 146 for signature [2, 1].
a(A007304(n)) = 314 for signature [1, 1, 1].
a(A065036(n)) = 23226 for signature [3, 1].
a(A085986(n)) = 42814 for signature [2, 2].
a(A085987(n)) = 141578 for signature [2, 1, 1]. (End)

A381311 Numbers whose powerful part (A057521) is a power of a prime with an even exponent >= 2.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 112, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 188, 192, 198, 204, 207, 208, 212, 220, 228, 234, 236
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Numbers k whose largest unitary divisor that is a square, A350388(k), is a prime power (A246655), or equivalently, A350388(k) is in A056798 \ {1}.
Numbers having exactly one non-unitary prime factor and its multiplicity is even.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., 2*m} with m >= 1, i.e., any number (including zero) of 1's and then a single even number.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} p/((p-1)*(p+1)^2) = 0.24200684327095676029... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;;,2]]]}, EvenQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000],q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); !(e[1] % 2) && (#e == 1 || e[2] == 1));
Previous Showing 21-30 of 33 results. Next