cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A112102 Numerator of Sum_{i=1..n} 1/(i^3*C(2*i,i)).

Original entry on oeis.org

0, 1, 25, 1129, 63251, 1581371, 52185743, 33242372291, 24176277773, 40688677687159, 2378722720177, 3741730846458901, 86059809503772983, 72720539036773885963, 72720539038037143387, 52722390802769505531767, 13075152919096992777263341
Offset: 0

Views

Author

N. J. A. Sloane, Nov 30 2005

Keywords

Examples

			0, 1/2, 25/48, 1129/2160, 63251/120960, 1581371/3024000, 52185743/99792000, ... -> Pi^2/18.
		

Crossrefs

Cf. A086463 (Pi^2/18), A112103 (denominator).

Programs

  • Maple
    f:= proc(n) local i; numer(add(1/(i^3*binomial(2*i,i)),i=1..n)) end proc:
    map(f, [$0..20]); # Robert Israel, Jun 22 2023
  • Mathematica
    Join[{0},Numerator[Accumulate[Table[1/(i^3 Binomial[2i,i]),{i,20}]]]] (* Harvey P. Dale, May 28 2014 *)
  • PARI
    a(n) = numerator(sum(i=1, n, 1/(i^3*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Extensions

Definition corrected (and an incorrect sum deleted) by Wolfdieter Lang, Oct 07 2008

A112103 Denominator of Sum_{i=1..n} 1/(i^3*C(2*i,i)).

Original entry on oeis.org

1, 2, 48, 2160, 120960, 3024000, 99792000, 63567504000, 46230912000, 77806624896000, 4548694993920, 7155097225436160, 164567236185031680, 139059314576351769600, 139059314576351769600, 100818003067855032960000, 25002864760828048174080000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 30 2005

Keywords

Examples

			0, 1/2, 25/48, 1129/2160, 63251/120960, 1581371/3024000, 52185743/99792000, ... -> Pi^2/18.
		

Crossrefs

Cf. A086463 (Pi^2/18), A112102 (numerator).

Programs

  • Maple
    f:= proc(n) local i; denom(add(1/(i^3*binomial(2*i,i)),i=1..n)) end proc:
    map(f, [$0..20]); # Robert Israel, Jun 22 2023
  • Mathematica
    Table[Sum[1/(k^3 Binomial[2k,k]),{k,n}],{n,0,20}]//Denominator (* Harvey P. Dale, Feb 19 2023 *)
  • PARI
    a(n) = denominator(sum(i=1, n, 1/(i^3*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Extensions

Definition corrected (and an incorrect sum deleted) by Wolfdieter Lang, Oct 07 2008

A280098 The sum of the divisors of 24*n - 1, divided by 24.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 7, 8, 11, 10, 11, 14, 13, 17, 15, 16, 19, 18, 28, 20, 21, 24, 25, 31, 25, 30, 27, 31, 35, 30, 31, 35, 38, 41, 35, 36, 37, 38, 54, 46, 41, 45, 43, 53, 49, 46, 57, 48, 62, 55, 51, 55, 56, 76, 55, 60, 57, 63, 71, 60, 80, 62, 63, 77, 65, 66, 67
Offset: 1

Views

Author

Michael Somos, Dec 25 2016

Keywords

Comments

Conjecture: only the integers k in {1, 3, 4, 6, 8, 12, 24} have the property that the sum of the divisors of (k*n-1)/k is always an integer. - Robert G. Wilson v, Dec 25 2016
The finite sequence mentioned in the above conjecture gives the sum of the divisors of the partition numbers of the first seven positive integers (cf. A139041). - Omar E. Pol, Dec 25 2016

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 7*x^7 + 8*x^8 + 11*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSigma[ 1, 24 n - 1] / 24];
    DivisorSigma[1,24*Range[70]-1]/24 (* Harvey P. Dale, Sep 25 2017 *)
  • PARI
    {a(n) = if( n<1, 0, sigma(24*n - 1) / 24)};

Formula

24 * a(n) = sum of the divisors of A183010(n).
a(n) = A280097(n)/24. - Omar E. Pol, Dec 25 2016
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Mar 28 2024

A082050 Sum of divisors of n that are not of the form 3k+1.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 0, 10, 12, 7, 11, 23, 0, 16, 23, 10, 17, 38, 0, 27, 24, 13, 23, 55, 5, 28, 39, 16, 29, 61, 0, 42, 47, 19, 40, 86, 0, 40, 42, 35, 41, 88, 0, 57, 77, 25, 47, 103, 0, 57, 71, 28, 53, 119, 16, 80, 60, 31, 59, 153, 0, 64, 96, 42, 70, 121, 0, 87, 95, 56, 71, 190
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:=Total[Select[Divisors[n],!IntegerQ[(#-1)/3]&]]; Array[sd,80] (* Harvey P. Dale, May 04 2011 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%3!=1,d))","))
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, (3*n-1)*x^(3*n-1)/(1-x^(3*n-1)) + (3*n)*x^(3*n)/(1-x^(3*n)) );
    v = Vec(gf);  concat([0],v)
    \\ Joerg Arndt, May 17 2013

Formula

a(A004611(n)) = 0.
G.f.: Sum_{k>=1} x^(2*k)*(2+3*x^k+x^(3*k))/(1-x^(3*k))^2. - Vladeta Jovovic, Apr 11 2006
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Jan 06 2024

A082051 Sum of divisors of n that are not of the form 3k+2.

Original entry on oeis.org

1, 1, 4, 5, 1, 10, 8, 5, 13, 11, 1, 26, 14, 8, 19, 21, 1, 37, 20, 15, 32, 23, 1, 50, 26, 14, 40, 40, 1, 65, 32, 21, 37, 35, 8, 89, 38, 20, 56, 55, 1, 80, 44, 27, 73, 47, 1, 114, 57, 36, 55, 70, 1, 118, 56, 40, 80, 59, 1, 141, 62, 32, 104, 85, 14, 131, 68, 39, 73, 88, 1, 185
Offset: 1

Views

Author

Ralf Stephan, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 2) / 3]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,if(d%3!=2,d))","))
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, (3*n-2)*x^(3*n-2)/(1-x^(3*n-2)) + (3*n)*x^(3*n)/(1-x^(3*n)) );
    v = Vec(gf)
    \\ Joerg Arndt, May 17 2013

Formula

a(A003627(n)) = 1.
G.f.: Sum_{k>=1} x^k*(1 + 3*x^(2*k) + 2*x^(3*k))/(1 - x^(3*k))^2. - Ilya Gutkovskiy, Sep 12 2019
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Jan 06 2024

A261839 Decimal expansion of the central binomial sum S(5), where S(k) = Sum_{n>=1} 1/(n^k*binomial(2n,n)).

Original entry on oeis.org

5, 0, 5, 4, 2, 9, 4, 7, 4, 6, 8, 3, 5, 1, 9, 2, 4, 1, 6, 4, 2, 4, 5, 0, 4, 8, 1, 9, 0, 8, 4, 3, 2, 1, 4, 9, 1, 8, 8, 6, 6, 9, 0, 1, 4, 5, 6, 8, 2, 6, 2, 8, 6, 4, 9, 8, 2, 6, 6, 4, 7, 1, 2, 8, 7, 5, 7, 3, 3, 4, 7, 3, 3, 7, 6, 1, 7, 5, 9, 0, 6, 8, 2, 7, 1, 6, 4, 5, 3, 3, 1, 8, 1, 5, 0, 0, 1, 3, 6, 6, 1, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.5054294746835192416424504819084321491886690145682628649826647...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)).

Programs

  • Mathematica
    S[5] = 2*Pi*Im[PolyLog[4, (-1)^(1/3)]] + (1/9)*Pi^2*Zeta[3] - 19*Zeta[5]/3; RealDigits[S[5], 10, 103] // First
  • PARI
    suminf(n=1, 1/(n^5*binomial(2*n,n))) \\ Michel Marcus, Sep 03 2015

Formula

S(5) = 2*Pi*Im(PolyLog(4, (-1)^(1/3))) + (1/9)*Pi^2*zeta(3) -19*zeta(5)/3.
Equals (1/2) 4F3(1,1,1,1; 3/2,2,2; 1/4).
Also equals (1/(2592*sqrt(3)))*(Pi*(PolyGamma(3, 1/6) + PolyGamma(3, 1/3) - PolyGamma(3, 2/3) - PolyGamma(3, 5/6))) + (1/9)*Pi^2*zeta(3) - 19*zeta(5)/3.

A264740 Sum of odd parts of divisors of n.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 8, 4, 13, 12, 12, 12, 14, 16, 24, 5, 18, 26, 20, 18, 32, 24, 24, 16, 31, 28, 40, 24, 30, 48, 32, 6, 48, 36, 48, 39, 38, 40, 56, 24, 42, 64, 44, 36, 78, 48, 48, 20, 57, 62, 72, 42, 54, 80, 72, 32, 80, 60, 60, 72, 62, 64, 104, 7
Offset: 1

Views

Author

Keywords

Comments

It is easy to show that a(n) is odd iff n is a square.
a(n) = sigma(n) for odd n, since any divisor of an odd number is odd.
Inverse Möbius transform of A000265(n). - Wesley Ivan Hurt, Jun 26 2025

Examples

			Divisors of 10 are 1, 2, 5, 10. The odd parts of these are 1, 1, 5, 5, so a(10) = 1+1+5+5 = 12.
		

Crossrefs

Programs

  • Haskell
    a264740 = sum . map a000265 . a027750_row'
    -- Reinhard Zumkeller, Nov 23 2015
  • Maple
    with(numtheory): with(padic): seq(add(d/2^ordp(d,2), d in divisors(n)), n=1..80); # Ridouane Oudra, Oct 30 2023
  • Mathematica
    f[p_, e_] := If[p == 2, e + 1, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 30 2020 *)
  • PARI
    a(n)=my(k=valuation(n,2));sigma(n)\(2^(k+1)-1)*(k+1)
    

Formula

Multiplicative with a(2^k) = k + 1, a(p^k) = sigma(p^k) = (p^(k+1)-1) / (p-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Nov 04 2022
a(n) = Sum_{d|n} A000265(d). - Ridouane Oudra, Oct 30 2023

A214361 Expansion of c(q^2) * (c(q) + 2 * c(q^4)) / 9 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 3, 3, 6, 9, 8, 3, 9, 18, 12, 9, 14, 24, 18, 3, 18, 27, 20, 18, 24, 36, 24, 9, 31, 42, 27, 24, 30, 54, 32, 3, 36, 54, 48, 27, 38, 60, 42, 18, 42, 72, 44, 36, 54, 72, 48, 9, 57, 93, 54, 42, 54, 81, 72, 24, 60, 90, 60, 54, 62, 96, 72, 3, 84, 108, 68, 54
Offset: 1

Views

Author

Michael Somos, Jul 18 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
b(n) = 6*a(n) is the number of solutions in integers to n = x^2 + y^2 + z^2 + w^2 where x + y + z is not divisible by 3. - Michael Somos, Jun 23 2018

Examples

			G.f. = q + 3*q^2 + 3*q^3 + 3*q^4 + 6*q^5 + 9*q^6 + 8*q^7 + 3*q^8 + 9*q^9 + 18*q^10 + ...
a(1) = 1, b(1) = 6 with solutions (w, x, y, z) = {(0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)} and their negatives. - _Michael Somos_, Jun 23 2018
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 - EllipticTheta[ 3, 0, q^3]^4) / 8, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2] QPochhammer[ -q^3, q^6])^3 EllipticTheta[ 2, 0, (-q)^(3/2)]^4 / (-16 (-q)^(1/2)), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / ( eta(x + A) * eta(x^4 + A))^3, n))};
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n) + if( n%3==0, -1 * sigma(n/3)) + if( n%4==0, -4 * sigma(n/4)) + if( n%12==0, +4 * sigma(n/12)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 3, p==3, 3^e, (p^(e+1) - 1) / (p - 1))))};

Formula

Expansion of (phi(q)^4 - phi(q^3)^4) / 8 = q * phi(q^3) * (chi(q) * psi(-q^3))^3 = q * psi(-q^3)^4 * (chi(q) * chi(q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2)^6 * eta(q^3) * eta(q^6)^2 * eta(q^12) / ( eta(q) * eta(q^4))^3 in powers of q.
Euler transform of period 12 sequence [3, -3, 2, 0, 3, -6, 3, 0, 2, -3, 3, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 4 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A214456.
a(n) is multiplicative with a(2^e) = 3 if e>0, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f.: x * Product_{k>0} (1 + (-x)^(3*k)) * (1 - x^(6*k))^4 / ( 1 + (-x)^k)^3.
a(n) = -(-1)^n * A124449(n). a(3*n) = 3*a(n). a(2*n) = a(4*n) = 3 * A121443(n). a(2*n + 1) = A185717(n).
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(2*s-2)) * (1 - 1/3^s) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/18 = 0.548311... (A086463). (End)

A261850 Decimal expansion of the central binomial sum S(6), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)).

Original entry on oeis.org

5, 0, 2, 6, 7, 6, 5, 2, 1, 4, 7, 8, 2, 6, 9, 2, 8, 6, 4, 5, 4, 6, 7, 7, 4, 5, 9, 9, 7, 9, 3, 4, 8, 6, 3, 9, 6, 6, 4, 6, 0, 2, 6, 0, 0, 0, 9, 1, 6, 4, 0, 6, 6, 1, 4, 6, 8, 6, 2, 7, 6, 5, 2, 3, 2, 4, 8, 7, 1, 6, 1, 5, 0, 8, 8, 5, 4, 6, 3, 1, 2, 1, 1, 7, 6, 2, 3, 4, 1, 5, 7, 2, 7, 8, 4, 0, 5, 2, 7, 6, 7, 8, 5, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.50267652147826928645467745997934863966460260009164...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)), A261839 (S(5)), A261851 (S(7)), A261852 (S(8)).

Programs

  • Mathematica
    S[6] = Sum[1/(n^6*Binomial[2n, n]), {n, 1, Infinity}]; RealDigits[S[6], 10, 105]//First

Formula

Equals (1/2) 7F6(1,1,1,1,1,1,1; 3/2,2,2,2,2,2; 1/4).
Also equals (2/3)*Integral_{0..Pi/3} t*log(2*sin(t/2))^4 dt.

A261851 Decimal expansion of the central binomial sum S(7), where S(k) = Sum_{n>=1} 1/(n^k binomial(2n,n)).

Original entry on oeis.org

5, 0, 1, 3, 2, 5, 8, 7, 2, 6, 8, 8, 1, 7, 8, 8, 0, 9, 4, 0, 2, 2, 9, 6, 7, 1, 0, 5, 5, 2, 7, 4, 9, 4, 4, 3, 7, 2, 6, 8, 7, 8, 3, 2, 9, 8, 5, 8, 0, 4, 5, 6, 8, 1, 5, 3, 6, 4, 5, 1, 2, 1, 7, 3, 3, 8, 8, 8, 7, 4, 1, 5, 8, 4, 5, 0, 6, 0, 6, 5, 3, 3, 0, 9, 0, 3, 1, 1, 3, 8, 8, 9, 7, 9, 4, 3, 9, 8, 9, 6, 1, 8, 1, 9, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2015

Keywords

Examples

			0.501325872688178809402296710552749443726878329858...
		

Crossrefs

Cf. A073010 (S(1)), A086463 (S(2)), A145438 (S(3)), A086464 (S(4)), A261839 (S(5)), A261850 (S(6)), A261852 (S(8)).

Programs

  • Mathematica
    S[7]=-6*Pi*Im[-PolyLog[6, (-1)^(1/3)]] + (17*Pi^4*Zeta[3])/1620 + (1/3)*Pi^2*Zeta[5] - (493*Zeta[7])/24; RealDigits[S[7], 10, 105]//First

Formula

Equals (1/2) 8F7(1,...,1; 3/2,2,...,2; 1/4).
Also equals -6*Pi*Im(-PolyLog(6, (-1)^(1/3))) + (17*Pi^4*zeta(3))/1620 + (1/3)*Pi^2*zeta(5) - (493*zeta(7))/24.
Previous Showing 11-20 of 29 results. Next