cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A337664 Number of compositions of n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 30, 58, 111, 210, 396, 750, 1420, 2688, 5079, 9586, 18092, 34157, 64516, 121899, 230373, 435463, 823379, 1557421, 2946938, 5578111, 10561990, 20005129, 37902514, 71832373, 136173273, 258211603, 489738627, 929074448, 1762899110, 3345713034
Offset: 0

Views

Author

Gus Wiseman, Sep 21 2020

Keywords

Examples

			The a(0) = 1 through a(5) = 16 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (212)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

A304712 is the unordered version.
A337562 is the strict case.
A337602 is the length-3 case.
A337665 does not consider a singleton to be coprime unless it is (1).
A337695 ranks the complement of these compositions.
A000740 counts relatively prime compositions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime length-3 compositions.
A337561 counts pairwise coprime strict compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,15}]

A335240 Number of integer partitions of n that are not pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 6, 11, 16, 25, 34, 51, 69, 98, 134, 181, 238, 316, 410, 536, 691, 887, 1122, 1423, 1788, 2246, 2800, 3483, 4300, 5304, 6508, 7983, 9745, 11869, 14399, 17436, 21040, 25367, 30482, 36568, 43735, 52239, 62239, 74073, 87950, 104277, 123348
Offset: 0

Views

Author

Gus Wiseman, May 30 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
These are also partitions that are a singleton or whose product is strictly greater than the LCM of their parts.

Examples

			The a(2) = 1 through a(9) = 16 partitions:
  (2)  (3)  (4)   (5)    (6)     (7)      (8)       (9)
            (22)  (221)  (33)    (322)    (44)      (63)
                         (42)    (331)    (62)      (333)
                         (222)   (421)    (332)     (432)
                         (2211)  (2221)   (422)     (441)
                                 (22111)  (2222)    (522)
                                          (3221)    (621)
                                          (3311)    (3222)
                                          (4211)    (3321)
                                          (22211)   (4221)
                                          (221111)  (22221)
                                                    (32211)
                                                    (33111)
                                                    (42111)
                                                    (222111)
                                                    (2211111)
		

Crossrefs

The version for relatively prime instead of coprime is A018783.
The Heinz numbers of these partitions are the complement of A302696.
The complement is counted by A327516.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Numbers whose binary indices are pairwise coprime are A326675.
All of the following pertain to compositions in standard order (A066099):
- GCD is A326674.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Non-coprime compositions are A335239.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!CoprimeQ@@#&]],{n,0,30}]

A337984 Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.

Original entry on oeis.org

15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}     155: {3,11}     265: {3,16}
     33: {2,5}     161: {4,9}      287: {4,13}
     35: {3,4}     165: {2,3,5}    291: {2,25}
     51: {2,7}     177: {2,17}     295: {3,17}
     55: {3,5}     187: {5,7}      309: {2,27}
     69: {2,9}     201: {2,19}     323: {7,8}
     77: {4,5}     205: {3,13}     327: {2,29}
     85: {3,7}     209: {5,8}      329: {4,15}
     93: {2,11}    215: {3,14}     335: {3,19}
     95: {3,8}     217: {4,11}     341: {5,11}
    119: {4,7}     219: {2,21}     355: {3,20}
    123: {2,13}    221: {6,7}      381: {2,31}
    141: {2,15}    249: {2,23}     385: {3,4,5}
    143: {5,6}     253: {5,9}      391: {7,9}
    145: {3,10}    255: {2,3,7}    395: {3,22}
		

Crossrefs

A005117 is a superset.
A337485 counts these partitions.
A302568 considers singletons to be coprime.
A304711 allows 1's, with squarefree version A302797.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version A318717 ranked by A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

A335237 Numbers whose binary indices are not a singleton nor pairwise coprime.

Original entry on oeis.org

0, 10, 11, 14, 15, 26, 27, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 74, 75, 78, 79, 90, 91, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
    0:       0 ~ {}
   10:    1010 ~ {2,4}
   11:    1011 ~ {1,2,4}
   14:    1110 ~ {2,3,4}
   15:    1111 ~ {1,2,3,4}
   26:   11010 ~ {2,4,5}
   27:   11011 ~ {1,2,4,5}
   30:   11110 ~ {2,3,4,5}
   31:   11111 ~ {1,2,3,4,5}
   34:  100010 ~ {2,6}
   35:  100011 ~ {1,2,6}
   36:  100100 ~ {3,6}
   37:  100101 ~ {1,3,6}
   38:  100110 ~ {2,3,6}
   39:  100111 ~ {1,2,3,6}
   40:  101000 ~ {4,6}
   41:  101001 ~ {1,4,6}
   42:  101010 ~ {2,4,6}
   43:  101011 ~ {1,2,4,6}
   44:  101100 ~ {3,4,6}
		

Crossrefs

The version for prime indices is A316438.
The version for standard compositions is A335236.
Numbers whose binary indices are pairwise coprime or a singleton: A087087.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],!(Length[bpe[#]]==1||CoprimeQ@@bpe[#])&]

Formula

Complement in A001477 of A326675 and A000079.

A343654 Number of pairwise coprime sets of divisors > 1 of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Comments

First differs from A100565 at a(210) = 52, A100565(210) = 51.

Examples

			The a(n) sets for n = 1, 2, 4, 6, 8, 12, 24, 30, 32, 36, 48:
  {}  {}   {}   {}     {}   {}     {}     {}       {}    {}     {}
      {2}  {2}  {2}    {2}  {2}    {2}    {2}      {2}   {2}    {2}
           {4}  {3}    {4}  {3}    {3}    {3}      {4}   {3}    {3}
                {6}    {8}  {4}    {4}    {5}      {8}   {4}    {4}
                {2,3}       {6}    {6}    {6}      {16}  {6}    {6}
                            {12}   {8}    {10}     {32}  {9}    {8}
                            {2,3}  {12}   {15}           {12}   {12}
                            {3,4}  {24}   {30}           {18}   {16}
                                   {2,3}  {2,3}          {36}   {24}
                                   {3,4}  {2,5}          {2,3}  {48}
                                   {3,8}  {3,5}          {2,9}  {2,3}
                                          {5,6}          {3,4}  {3,4}
                                          {2,15}         {4,9}  {3,8}
                                          {3,10}                {3,16}
                                          {2,3,5}
		

Crossrefs

The version for partitions is A007359.
The version for subsets of {1..n} is A084422.
The case of pairs is A089233.
The version with 1's is A225520.
The maximal case is A343652.
The case without empty sets or singletons is A343653.
The maximal case without singletons is A343660.
A018892 counts pairwise coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A187106, A276187, and A320426 count other types of pairwise coprime sets.
A326077 counts maximal pairwise indivisible sets.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#1==1&)/@Subsets[y,{2}];
    Table[Length[Select[Subsets[Rest[Divisors[n]]],pwcop]],{n,100}]

A343659 Number of maximal pairwise coprime subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 7, 9, 9, 10, 10, 12, 16, 19, 19, 20, 20, 22, 28, 32, 32, 33, 54, 61, 77, 84, 84, 85, 85, 94, 112, 123, 158, 161, 161, 176, 206, 212, 212, 214, 214, 229, 241, 260, 260, 263, 417, 428, 490, 521, 521, 526, 655, 674, 764, 818, 818, 820, 820, 874, 918, 975, 1182, 1189, 1189
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Comments

For this sequence, it does not matter whether singletons are considered pairwise coprime.
For n > 2, also the number of maximal pairwise coprime subsets of {2..n}.
For each prime p <= n, p divides exactly one element of each maximal subset. - Bert Dobbelaere, May 04 2021

Examples

			The a(1) = 1 through a(9) = 7 subsets:
  {1}  {12}  {123}  {123}  {1235}  {156}   {1567}   {1567}   {1567}
                    {134}  {1345}  {1235}  {12357}  {12357}  {12357}
                                   {1345}  {13457}  {13457}  {12579}
                                                    {13578}  {13457}
                                                             {13578}
                                                             {14579}
                                                             {15789}
		

Crossrefs

The case of pairs is A015614.
The case of triples is A015617.
The non-maximal version counting empty sets and singletons is A084422.
The non-maximal version counting singletons is A187106.
The non-maximal version is A320426(n) = A276187(n) + 1.
The version for indivisibility instead of coprimality is A326077.
The version for sets of divisors is A343652.
The version for sets of divisors > 1 is A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
    Table[Length[fasmax[Select[Subsets[Range[n]],CoprimeQ@@#&]]],{n,15}]

Extensions

More terms from Bert Dobbelaere, May 04 2021

A337695 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are not pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

34, 40, 69, 70, 81, 88, 98, 104, 130, 138, 139, 141, 142, 160, 162, 163, 168, 177, 184, 197, 198, 209, 216, 226, 232, 260, 261, 262, 274, 276, 277, 278, 279, 282, 283, 285, 286, 288, 290, 296, 321, 324, 325, 326, 327, 328, 337, 344, 352, 354, 355, 360, 369
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
     34: (4,2)        163: (2,4,1,1)    277: (4,2,2,1)
     40: (2,4)        168: (2,2,4)      278: (4,2,1,2)
     69: (4,2,1)      177: (2,1,4,1)    279: (4,2,1,1,1)
     70: (4,1,2)      184: (2,1,1,4)    282: (4,1,2,2)
     81: (2,4,1)      197: (1,4,2,1)    283: (4,1,2,1,1)
     88: (2,1,4)      198: (1,4,1,2)    285: (4,1,1,2,1)
     98: (1,4,2)      209: (1,2,4,1)    286: (4,1,1,1,2)
    104: (1,2,4)      216: (1,2,1,4)    288: (3,6)
    130: (6,2)        226: (1,1,4,2)    290: (3,4,2)
    138: (4,2,2)      232: (1,1,2,4)    296: (3,2,4)
    139: (4,2,1,1)    260: (6,3)        321: (2,6,1)
    141: (4,1,2,1)    261: (6,2,1)      324: (2,4,3)
    142: (4,1,1,2)    262: (6,1,2)      325: (2,4,2,1)
    160: (2,6)        274: (4,3,2)      326: (2,4,1,2)
    162: (2,4,2)      276: (4,2,3)      327: (2,4,1,1,1)
		

Crossrefs

A304712 counts the complement, with ordered version A337664.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335238 does not consider a singleton coprime unless it is (1).
A337600 counts 3-part partitions in the complement.
A000740 counts relatively prime compositions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A337461 counts pairwise coprime 3-part compositions.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337666 ranks pairwise non-coprime compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!(SameQ@@stc[#]||CoprimeQ@@Union[stc[#]])&]

A337987 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 265, 275, 279, 287, 291, 295, 297, 309, 323, 327, 329, 335, 341, 355, 363, 369
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions with no 1's whose distinct parts are pairwise coprime (A338315). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}      135: {2,2,2,3}    215: {3,14}
     33: {2,5}      141: {2,15}       217: {4,11}
     35: {3,4}      143: {5,6}        219: {2,21}
     45: {2,2,3}    145: {3,10}       221: {6,7}
     51: {2,7}      153: {2,2,7}      225: {2,2,3,3}
     55: {3,5}      155: {3,11}       245: {3,4,4}
     69: {2,9}      161: {4,9}        249: {2,23}
     75: {2,3,3}    165: {2,3,5}      253: {5,9}
     77: {4,5}      175: {3,3,4}      255: {2,3,7}
     85: {3,7}      177: {2,17}       265: {3,16}
     93: {2,11}     187: {5,7}        275: {3,3,5}
     95: {3,8}      201: {2,19}       279: {2,2,11}
     99: {2,2,5}    205: {3,13}       287: {4,13}
    119: {4,7}      207: {2,2,9}      291: {2,25}
    123: {2,13}     209: {5,8}        295: {3,17}
		

Crossrefs

A304711 is the not necessarily odd version, with squarefree case A302797.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A337984 is the squarefree case.
A338315 counts the partitions with these Heinz numbers.
A338316 considers singletons coprime.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's, with Heinz numbers A302568.
A304709 counts partitions whose distinct parts are pairwise coprime.
A327516 counts pairwise coprime partitions, with Heinz numbers A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A318717 counts pairwise non-coprime strict partitions, with Heinz numbers A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]

A282748 Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_i, x_j) = 1 for all i != j (where 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 3, 4, 1, 1, 2, 9, 4, 5, 1, 1, 6, 3, 16, 5, 6, 1, 1, 4, 15, 4, 25, 6, 7, 1, 1, 6, 9, 28, 5, 36, 7, 8, 1, 1, 4, 21, 16, 45, 6, 49, 8, 9, 1, 1, 10, 9, 52, 25, 66, 7, 64, 9, 10, 1, 1, 4, 39, 16, 105, 36, 91, 8, 81, 10, 11, 1, 1, 12, 9, 100, 25, 186, 49, 120, 9, 100, 11, 12, 1, 1, 6, 45, 16, 205, 36, 301, 64, 153, 10, 121, 12, 13, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2017

Keywords

Comments

See A101391 for the triangle T(n,k) = number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (2 <= k <= n).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  2,  3,   1;
  1,  4,  3,   4,   1;
  1,  2,  9,   4,   5,   1;
  1,  6,  3,  16,   5,   6,  1;
  1,  4, 15,   4,  25,   6,  7,   1;
  1,  6,  9,  28,   5,  36,  7,   8,  1;
  1,  4, 21,  16,  45,   6, 49,   8,  9,   1;
  1, 10,  9,  52,  25,  66,  7,  64,  9,  10,  1;
  1,  4, 39,  16, 105,  36, 91,   8, 81,  10, 11,  1;
  1, 12,  9, 100,  25, 186, 49, 120,  9, 100, 11, 12, 1;
  ...
From _Gus Wiseman_, Nov 12 2020: (Start)
Row n = 6 counts the following compositions:
  (6)  (15)  (114)  (1113)  (11112)  (111111)
       (51)  (123)  (1131)  (11121)
             (132)  (1311)  (11211)
             (141)  (3111)  (12111)
             (213)          (21111)
             (231)
             (312)
             (321)
             (411)
(End)
		

Crossrefs

A072704 counts the unimodal instead of coprime version.
A087087 and A335235 rank these compositions.
A101268 gives row sums.
A101391 is the relatively prime instead of pairwise coprime version.
A282749 is the unordered version.
A000740 counts relatively prime compositions, with strict case A332004.
A007360 counts pairwise coprime or singleton strict partitions.
A051424 counts pairwise coprime or singleton partitions, ranked by A302569.
A097805 counts compositions by sum and length.
A178472 counts compositions with a common divisor.
A216652 and A072574 count strict compositions by sum and length.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A335235 ranks pairwise coprime or singleton compositions.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337562 counts pairwise coprime or singleton strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],Length[#]==1||CoprimeQ@@#&]],{n,10},{k,n}] (* Gus Wiseman, Nov 12 2020 *)

Formula

It seems that no general formula or recurrence is known, although Shonhiwa gives formulas for a few of the early diagonals.

A335241 Numbers whose prime indices are not pairwise coprime, where a singleton is not coprime unless it is {1}.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 18, 19, 21, 23, 25, 27, 29, 31, 36, 37, 39, 41, 42, 43, 45, 47, 49, 50, 53, 54, 57, 59, 61, 63, 65, 67, 71, 72, 73, 75, 78, 79, 81, 83, 84, 87, 89, 90, 91, 97, 98, 99, 100, 101, 103, 105, 107, 108, 109, 111, 113, 114, 115, 117, 121
Offset: 1

Views

Author

Gus Wiseman, May 30 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}          31: {11}          61: {18}
    3: {2}         36: {1,1,2,2}     63: {2,2,4}
    5: {3}         37: {12}          65: {3,6}
    7: {4}         39: {2,6}         67: {19}
    9: {2,2}       41: {13}          71: {20}
   11: {5}         42: {1,2,4}       72: {1,1,1,2,2}
   13: {6}         43: {14}          73: {21}
   17: {7}         45: {2,2,3}       75: {2,3,3}
   18: {1,2,2}     47: {15}          78: {1,2,6}
   19: {8}         49: {4,4}         79: {22}
   21: {2,4}       50: {1,3,3}       81: {2,2,2,2}
   23: {9}         53: {16}          83: {23}
   25: {3,3}       54: {1,2,2,2}     84: {1,1,2,4}
   27: {2,2,2}     57: {2,8}         87: {2,10}
   29: {10}        59: {17}          89: {24}
		

Crossrefs

The complement is A302696.
The version for relatively prime instead of coprime is A318978.
The version for standard compositions is A335239.
These are the Heinz numbers of the partitions counted by A335240.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Primes and numbers with pairwise coprime prime indices are A302569.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime standard composition numbers are A333227.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!CoprimeQ@@primeMS[#]&]
Previous Showing 21-30 of 30 results.