cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A088540 Decimal expansion of (4/sqrt(Pi))*exp(-gamma/2)*K where K is the Landau-Ramanujan constant and gamma the Euler-Mascheroni constant.

Original entry on oeis.org

1, 2, 9, 2, 3, 0, 4, 1, 5, 7, 1, 2, 8, 6, 8, 8, 6, 0, 7, 1, 0, 9, 1, 3, 8, 3, 8, 9, 8, 7, 0, 4, 3, 2, 0, 6, 5, 3, 4, 2, 9, 6, 1, 4, 2, 5, 0, 1, 2, 9, 9, 7, 2, 4, 1, 2, 2, 7, 6, 2, 9, 2, 3, 1, 6, 1, 9, 5, 0, 0, 0, 5, 5, 2, 8, 2, 3, 2, 0, 7, 9, 4, 2, 7, 3, 0, 3, 0, 7, 5, 9, 7, 5, 5, 2, 4, 4, 9, 9, 4, 1, 6, 1, 3, 2
Offset: 1

Views

Author

Benoit Cloitre, Nov 16 2003

Keywords

Comments

An illustration of the Chebyshev effect.

Examples

			1.2923041571286886071...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100.

Crossrefs

Programs

  • Mathematica
    digits = 105; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 4/Sqrt[Pi]*Exp[-EulerGamma/2]*LandauRamanujanK // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Jun 04 2014, updated Mar 14 2018 *)

Formula

Equals (4/sqrt(Pi))*exp(-gamma/2)*K = lim_{x->oo} Product_{p prime, p == 1 (mod 4), p <= x} (1 - 1/p).
Equals 4*A087197*A064533/exp(A155739). - R. J. Mathar, Feb 05 2009

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A222391 Decimal expansion of e^2/sqrt(Pi).

Original entry on oeis.org

4, 1, 6, 8, 8, 2, 8, 4, 8, 3, 2, 6, 6, 6, 9, 2, 2, 3, 0, 4, 2, 1, 3, 0, 3, 9, 0, 7, 7, 5, 2, 3, 1, 0, 2, 6, 0, 3, 8, 6, 6, 6, 4, 6, 8, 1, 1, 4, 8, 4, 9, 9, 6, 3, 7, 8, 3, 0, 0, 0, 8, 9, 5, 4, 6, 2, 4, 0, 4, 3, 2, 2, 7, 2, 0, 1, 5, 3, 6, 0, 9, 2, 7, 9, 8, 1, 9
Offset: 1

Views

Author

Bruno Berselli, Mar 19 2013

Keywords

Examples

			4.1688284832666922304213039077523102603866646811484996378300089546240432...
		

Crossrefs

Cf. A096789: Sum_{n >= 1} 1/(Gamma(n)*Gamma(n+1)).
Cf. A035009 (see fourth comment).

Programs

  • Maple
    Digits:=100: evalf(exp(1)^2/sqrt(Pi)); # Wesley Ivan Hurt, Jan 09 2017
  • Mathematica
    RealDigits[E^2/Sqrt[Pi], 10, 90][[1]]
  • PARI
    (exp(1))^2/sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

Formula

Equals decimal expansion of Sum_{n >= 1} 1/(Gamma(n/2)*Gamma((n+1)/2)).

A249521 Decimal expansion of 4/sqrt(Pi), the average distance between two random Gaussian points in three dimensions.

Original entry on oeis.org

2, 2, 5, 6, 7, 5, 8, 3, 3, 4, 1, 9, 1, 0, 2, 5, 1, 4, 7, 7, 9, 2, 3, 1, 7, 8, 0, 6, 2, 4, 3, 0, 9, 0, 3, 4, 3, 3, 7, 6, 2, 0, 2, 5, 1, 7, 3, 1, 5, 9, 9, 5, 4, 2, 7, 3, 7, 6, 3, 4, 2, 8, 8, 6, 8, 4, 2, 5, 6, 9, 8, 7, 3, 7, 6, 5, 9, 7, 3, 6, 5, 7, 9, 4, 6, 9, 7, 4, 6, 4, 0, 8, 0, 8, 4, 2, 9, 4, 5, 3, 7, 7, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			2.25675833419102514779231780624309034337620251731...
		

Crossrefs

Cf. A002161 (the analog constant in two dimensions), A087197, A190732 (the analog constant in one dimension).

Programs

  • Mathematica
    RealDigits[4/Sqrt[Pi], 10, 103] // First
  • PARI
    4/sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

Formula

Equals Sum_{k>=0} k!/(k+3/2)!. - Amiram Eldar, Jun 19 2023

A383278 The number of integers k such that A034444(k) * k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Amiram Eldar, Apr 21 2025

Keywords

Comments

The number of terms of A383276 not exceeding n.

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, section 31, page 72.

Crossrefs

Partial sums of A383277.
The unitary analog of A356005.

Programs

  • Mathematica
    Accumulate[Table[DivisorSum[n, 1 &, # * 2^PrimeNu[#] == n &], {n, 1, 100}]]
    (* second program: *)
    f[n_] := Module[{e = IntegerExponent[n, 2], w}, w = PrimeNu[n/2^e]; If[e > w + 1 || e == w, 1, 0]]; Accumulate[Array[f, 100]]
  • PARI
    list(lim) = my(s = 0); for(n = 1, lim, s += sumdiv(n, d, (1 << omega(d)) * d == n); print1(s, ", "));
    
  • PARI
    f(n) = {my(e = valuation(n, 2), w = omega(n >> e)); e > w + 1 || e == w;}
    list(lim) = my(s = 0); for(n = 1, lim, s += f(n); print1(s, ", "));

Formula

a(n) = Sum_{k=1..n} A383277(k).
a(n) = (c + o(1)) * n / sqrt(log(n)), where c = (1/sqrt(Pi)) * Product_{p prime} (p-1/2)/sqrt(p*(p-1)) = A087197 * A345288 = 0.61890644913204789046... (Abbott and Subbarao, 1989).

A087199 Decimal expansion of (3/(4*Pi))^(1/3).

Original entry on oeis.org

6, 2, 0, 3, 5, 0, 4, 9, 0, 8, 9, 9, 4, 0, 0, 0, 1, 6, 6, 6, 8, 0, 0, 6, 8, 1, 2, 0, 4, 7, 7, 7, 8, 1, 6, 7, 3, 5, 0, 7, 8, 6, 2, 0, 0, 1, 8, 6, 0, 0, 1, 6, 2, 0, 0, 9, 8, 9, 5, 6, 8, 8, 9, 9, 1, 3, 1, 4, 6, 9, 0, 6, 0, 6, 0, 0, 3, 3, 3, 6, 4, 1, 8, 5, 5, 1, 6, 2, 5, 3, 1, 8, 1, 4, 9, 2, 4, 3, 2, 8, 0, 0, 7, 3, 1
Offset: 0

Views

Author

Sven Simon, Aug 24 2003

Keywords

Comments

Radius of a sphere of volume 1.

Examples

			0.62035049089940001666800681204777816735078620018600162009895688991314690606003....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3/(4 Pi))^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Sep 29 2014 *)

A243454 Decimal expansion of the variance of the maximum of a size 5 sample from a normal (0,1) distribution.

Original entry on oeis.org

4, 4, 7, 5, 3, 4, 0, 6, 9, 0, 2, 0, 6, 6, 1, 9, 8, 8, 7, 6, 5, 6, 8, 4, 6, 5, 7, 7, 3, 0, 9, 8, 2, 6, 8, 5, 5, 3, 5, 5, 6, 3, 8, 2, 1, 5, 6, 8, 5, 4, 0, 1, 7, 1, 7, 8, 4, 9, 2, 4, 7, 5, 2, 7, 9, 4, 6, 3, 7, 2, 9, 3, 8, 8, 2, 0, 5, 5, 9, 8, 4, 9, 2, 6, 7, 1, 7, 6, 4, 9, 5, 2, 6, 5, 3, 7, 9, 9, 9, 1, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 05 2014

Keywords

Examples

			0.44753406902066198876568465773...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - 25/Pi + 150*ArcCsc[Sqrt[3]]/Pi^2 + 5*Sqrt[3]*ArcSec[2*Sqrt[2/3]]/Pi^2 - 225*ArcCsc[Sqrt[3]]^2/Pi^3, 10, 101] // First

Formula

1 - 25/Pi + 150*arccsc(sqrt(3))/Pi^2 + 5*sqrt(3)*arcsec(2*sqrt(2/3))/Pi^2 - 225*arccsc(sqrt(3))^2/Pi^3.

A243523 Decimal expansion of the expectation of the maximum of a size 6 sample from a normal (0,1) distribution.

Original entry on oeis.org

1, 2, 6, 7, 2, 0, 6, 3, 6, 0, 6, 1, 1, 4, 7, 1, 2, 9, 7, 6, 4, 9, 3, 4, 8, 8, 8, 1, 8, 6, 3, 9, 9, 4, 4, 4, 2, 6, 9, 3, 6, 5, 0, 1, 9, 1, 8, 5, 2, 4, 3, 5, 7, 4, 8, 9, 4, 6, 1, 7, 5, 7, 0, 6, 9, 7, 2, 8, 4, 5, 0, 9, 4, 9, 7, 0, 0, 9, 2, 9, 9, 6, 3, 8, 3, 6, 2, 7, 2, 4, 7, 3, 6, 9, 7, 8, 9, 6, 5, 1
Offset: 1

Views

Author

Jean-François Alcover, Jun 06 2014

Keywords

Examples

			1.26720636061147129764934888186399444269365...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    digits=100; mu[6] = (15*(Pi*(Pi - 4*ArcCsc[Sqrt[3]]) + 2*NIntegrate[ ArcSin[Sqrt[3]*Sqrt[1/(8 - Tan[x]^2)]], {x, 0, ArcCsc[Sqrt[3]]}, WorkingPrecision -> digits + 5]))/(2* Pi^(5/2)) ; RealDigits[mu[6], 10, digits] // First

Formula

(15*(Pi*(Pi-4*arccsc(sqrt(3))) + 2*integral_(x=0..arccsc(sqrt(3)))(arcsin(sqrt(3)*sqrt(1/(8-tan(x)^2))))))/(2*Pi^(5/2)).

A093604 Decimal expansion of D/2, where D^2 = 3*sqrt(3)/Pi.

Original entry on oeis.org

6, 4, 3, 0, 3, 7, 0, 6, 8, 5, 7, 8, 7, 4, 3, 7, 8, 4, 6, 4, 1, 7, 8, 2, 5, 0, 5, 6, 6, 5, 1, 5, 7, 9, 7, 8, 8, 6, 2, 3, 0, 4, 9, 8, 3, 3, 3, 2, 6, 3, 0, 4, 8, 7, 1, 2, 3, 9, 1, 4, 9, 9, 0, 4, 1, 5, 4, 3, 0, 2, 9, 9, 2, 4, 2, 4, 5, 1, 7, 0, 1, 6, 5, 0, 2, 7, 7, 8, 4, 9, 7, 5, 0, 7, 0, 8, 6, 5, 9, 8, 9, 3, 8, 2, 8, 7, 8, 9, 7, 5, 0, 3, 9, 8, 7, 2, 2, 3, 7, 4
Offset: 0

Views

Author

Lekraj Beedassy, May 14 2004

Keywords

Comments

D/2=sqrt(3*sqrt(3)/Pi)/2 corresponds to the radius of the area-bisecting concentric circle within the unit-sided hexagon.

Examples

			sqrt(3*sqrt(3)/Pi)/2 = 0.6430370685787437846417825056651579788623049833326304871239...
		

Crossrefs

Cf. A097603, A010527, A011002, A087197. - R. J. Mathar, Feb 06 2009

Programs

Extensions

Removed leading zero and adjusted offset - R. J. Mathar, Feb 06 2009
Corrected and extended by Harvey P. Dale, Aug 27 2017

A243524 Decimal expansion of the expectation of the maximum of a size 7 sample from a normal (0,1) distribution.

Original entry on oeis.org

1, 3, 5, 2, 1, 7, 8, 3, 7, 5, 6, 0, 6, 9, 0, 4, 3, 9, 9, 2, 2, 8, 9, 2, 2, 1, 6, 6, 8, 2, 8, 5, 7, 7, 3, 4, 5, 2, 9, 3, 2, 8, 5, 8, 4, 3, 5, 0, 2, 1, 9, 2, 2, 0, 6, 0, 8, 3, 4, 6, 8, 3, 5, 9, 6, 2, 3, 9, 5, 3, 7, 4, 9, 2, 2, 5, 7, 3, 7, 1, 9, 8, 8, 7, 1, 8, 0, 1, 4, 2, 1, 1, 6, 8, 2, 4, 0, 3, 0, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 06 2014

Keywords

Examples

			1.3521783756069043992289221668285773452932858435...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    digits = 100; mu[7] = (21*(Pi*(Pi - 5*ArcCsc[Sqrt[3]]) + 5*NIntegrate[ ArcSin[Sqrt[3]*Sqrt[1/(8 - Tan[x]^2)]], {x, 0, ArcCsc[Sqrt[3]]}, WorkingPrecision -> digits + 5]))/(2* Pi^(5/2)); RealDigits[mu[7], 10, digits] // First

Formula

(21*(Pi*(Pi-5*arccsc(sqrt(3))) + 5*integral_(x=0..arccsc(sqrt(3)))(arcsin(sqrt(3)*sqrt(1/(8-tan(x)^2))))))/(2*Pi^(5/2)).

A351400 Decimal expansion of e * erf(1), where erf is the error function.

Original entry on oeis.org

2, 2, 9, 0, 6, 9, 8, 2, 5, 2, 3, 0, 3, 2, 3, 8, 2, 3, 0, 9, 4, 9, 5, 3, 7, 1, 2, 6, 8, 6, 2, 1, 4, 7, 3, 1, 6, 9, 3, 7, 0, 8, 7, 5, 9, 0, 5, 3, 5, 7, 0, 6, 9, 1, 1, 2, 2, 1, 4, 2, 7, 8, 5, 6, 9, 8, 3, 5, 7, 1, 2, 0, 8, 5, 3, 3, 3, 0, 4, 3, 4, 9, 3, 6, 4, 3, 3, 4, 0, 8, 5, 8, 0, 5, 7, 7, 9, 8, 9, 4, 9, 4, 6, 1, 9
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2022

Keywords

Comments

The sum of reciprocals of the factorials of the positive half-integers.

Examples

			2.29069825230323823094953712686214731693708759053570...
		

References

  • Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei Rogosin, Mittag-Leffler Functions, Related Topics and Applications, New York, NY: Springer, 2020. See p. 94, eq. (4.12.9.5).
  • Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Fractional Differential Equations, Introduction to Fractional Differential Equations, Springer, Cham, 2019. See p. 12, eq. (1.9).

Crossrefs

Programs

  • Maple
    evalf(exp(1)*erf(1), 120);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    RealDigits[E * Erf[1], 10, 100][[1]]
  • PARI
    exp(1)*(1 - erfc(1)) \\ Michel Marcus, Feb 10 2022

Formula

Equals Sum_{k>=0} 1/(k + 1/2)! = Sum_{k>=1} 1/Gamma(k + 1/2).
Equals E_{1, 3/2}(1), where E_{a,b}(z) is the two-parameter Mittag-Leffler function.
Equals (1/sqrt(Pi)) * Sum_{k>=1} 2^k/(2*k-1)!! = (1/sqrt(Pi)) * Sum_{k>=1} A000079(k)/A001147(k).
Equals A001113 * A099286.
Equals A087197 * A125961.
Previous Showing 11-20 of 26 results. Next