cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A372015 Product of Fibonacci and self-convolution of Fibonacci numbers: a(n) = A000045(n+1)*A001629(n+1).

Original entry on oeis.org

0, 1, 4, 15, 50, 160, 494, 1491, 4420, 12925, 37380, 107136, 304764, 861445, 2421700, 6775755, 18879734, 52413856, 145038890, 400183575, 1101277060, 3023462521, 8282790024, 22646131200, 61805595000, 168399404425, 458128878724, 1244567262471, 3376576740410, 9149594423200
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 15 2024

Keywords

Comments

Conjecture: a(n) is the total number of pairs of adjacent parts that are the same color in all n-color compositions of n+1. - John Tyler Rascoe, Jul 30 2024

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then return n^2 fi;
    -((2 - 2*n^2 + n)*a(n - 1) + (1 - 2*n^2 + 3*n)*a(n - 2) + n^2*a(n - 3))/(n - 1)^2 end: seq(a(n), n = 0..29);  # Peter Luschny, Apr 16 2024
  • Mathematica
    CoefficientList[Series[x(1-x)/((1+x)*(1-3*x+x^2)^2),{x,0,29}],x] (* Stefano Spezia, Apr 16 2024 *)
  • PARI
    A_x(N)= {my(x='x+O('x^N)); concat([0],Vec(x*(1-x)/((1+x)*(1-3*x+x^2)^2)))}
    A_x(40) \\ John Tyler Rascoe, Jul 29 2024

Formula

a(n) = F(n+1)*((n+2)*F(n) + (n)*F(n+2))/5 where F(n) = A000045(n) is the Fibonacci numbers.
G.f.: x*(1-x)/((1+x)*(1-3*x+x^2)^2).

A383101 Number of compositions of n such that any part 1 can be m different colors where m is the largest part of the composition.

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 294, 1178, 4978, 22191, 104146, 513385, 2653003, 14349804, 81125023, 478686413, 2943737942, 18838530436, 125268429098, 864256288435, 6177766228172, 45689641883377, 349173454108407, 2754058599745239, 22393206702946457, 187501022603071090
Offset: 0

Views

Author

John Tyler Rascoe, Apr 16 2025

Keywords

Examples

			a(3) = 6 counts: (3), (2,1_a), (2,1_b), (1_a,2), (1_b,2), (1_a,1_a,1_a).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, m) option remember; binomial(n+p, n)*
          m^n+add(b(n-j, p+1, max(m, j)), j=2..n)
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 23 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(m=1,N, x^m/((1-m*x-(x^2-x^m)/(1-x))*(1-m*x-(x^2-x^(m+1))/(1-x)))))}
    A_x(30)

Formula

G.f.: 1 + Sum_{m>0} x^m/((1 - m*x - (x^2 - x^m)/(1 - x)) * (1 - m*x - (x^2 - x^(m+1))/(1 - x))).

A383175 Number of compositions of n such that any fixed point k can be k different colors.

Original entry on oeis.org

1, 1, 2, 5, 10, 22, 48, 101, 213, 450, 945, 1961, 4064, 8385, 17242, 35332, 72141, 146924, 298552, 605377, 1225277, 2475912, 4995754, 10067848, 20267680, 40762951, 81916919, 164504411, 330155437, 662265817, 1327860471, 2661376529, 5332341881, 10680912173
Offset: 0

Views

Author

John Tyler Rascoe, Apr 18 2025

Keywords

Examples

			a(3) = 5 counts: (3), (2,1), (1_a,2_a), (1_a,2_b), (1_a,1,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
         `if`(n<=i+j, ceil(2^(n-j-1)), b(n-j, i+1))*
         `if`(i=j, j, 1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..33);  # Alois P. Heinz, Apr 18 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N, prod(j=1,i, j*x^j-x^j+x/(1-x))))}
    A_x(30)

Formula

G.f.: 1 + Sum_{i>0} Product_{j=1..i} ( j*x^j - x^j + x/(1-x) ).

A141688 Triangle T(n, k) = Fibonacci(2*k)*T(n-1, k) + Fibonacci(2*(n-k+1))*T(n-1, k-1), with T(n, 1) = T(n, n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 26, 26, 1, 1, 99, 416, 99, 1, 1, 352, 5407, 5407, 352, 1, 1, 1200, 62616, 227094, 62616, 1200, 1, 1, 3977, 673728, 8212854, 8212854, 673728, 3977, 1, 1, 12918, 6889153, 269486766, 903413940, 269486766, 6889153, 12918, 1, 1, 41338, 67863290, 8256432767, 88493861004, 88493861004, 8256432767, 67863290, 41338, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 09 2008

Keywords

Comments

Row sums are: {1, 2, 8, 54, 616, 11520, 354728, 17781120, 1456191616, 193636396800, ...}.

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     6,       1;
  1,    26,      26,         1;
  1,    99,     416,        99,         1;
  1,   352,    5407,      5407,       352,        1;
  1,  1200,   62616,    227094,     62616,     1200,       1;
  1,  3977,  673728,   8212854,   8212854,   673728,    3977,     1;
  1, 12918, 6889153, 269486766, 903413940,269486766, 6889153, 12918, 1;
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k eq 1 or k eq n then return 1;
      else return Fibonacci(2*(n-k+1))*T(n-1, k-1) + Fibonacci(2*k)*T(n-1, k);
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 29 2021
    
  • Mathematica
    (* First program *)
    b[n_]:= b[n]= If[n==0, 1, Sum[k*b[n-k], {k,n}]];
    T[n_, k_]:= If[k==1 || k==n, 1, b[n-k+1]*T[n-1, k-1] + b[k]*T[n-1, k]];
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 29 2021 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, Fibonacci[2*(n-k+1)]*T[n-1, k-1] + Fibonacci[2*k]*T[n-1, k]];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 29 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): return 1 if (k==1 or k==n) else fibonacci(2*(n-k+1))*T(n-1, k-1) + fibonacci(2*k)*T(n-1, k)
    flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 29 2021

Formula

Let A088305(n) be defined by b(n) = Sum_{j=1..n} j*b(n-j), with b(0)=1, then T(n, k) = b(n-k+1)*T(n-1, k-1) + b(k)*T(n-1, k) with T(n,1) = T(n,n) = 1.
From G. C. Greubel, Mar 29 2021: (Start)
T(n, k) = Fibonacci(2*k)*T(n-1, k) + Fibonacci(2*(n-k+1))*T(n-1, k-1), with T(n, 1) = T(n, n) = 1.
T(n, 2) = A186314(n+1). (End)

Extensions

Edited by G. C. Greubel, Mar 29 2021

A143929 Eigentriangle by rows, termwise products of the natural numbers decrescendo and the bisected Fibonacci series.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 4, 3, 6, 8, 5, 4, 9, 16, 21, 6, 5, 12, 24, 42, 55, 7, 6, 15, 32, 63, 110, 144, 8, 7, 18, 40, 84, 165, 288, 377, 9, 8, 21, 48, 105, 220, 432, 754, 987, 10, 9, 24, 56, 126, 275, 576, 1131, 1974, 2584
Offset: 1

Views

Author

Gary W. Adamson, Sep 05 2008

Keywords

Comments

Row sums = even-indexed Fibonacci terms A001906.
Sum of n-th row terms = rightmost term of next row.

Examples

			First rows of the triangle T(n, m), n >= 1, m = 1..n:
  1;
  2, 1;
  3, 2,  3;
  4, 3,  6,  8;
  5, 4,  9, 16,  21;
  6, 5, 12, 24,  42,  55;
  7, 6, 15, 32,  63, 110, 144;
  8, 7, 18, 40,  84, 165, 288, 377;
  9, 8, 21, 48, 105, 220, 432, 754, 987;
  ...
Example: row 4 = (4, 3, 6, 8) = termwise product of (4, 3, 2, 1) and (1, 1, 3, 8).
		

Crossrefs

Formula

Given A004736: (1; 2,1; 3,2,1; 4,3,2,1; ...), we apply the termwise products of the sequence {A088305(n-1)}_{n>=1} starting (1, 1, 3, 8, 21, ...).
From Wolfdieter Lang, Jan 07 2021: (Start)
T(n, m) = 0 if n < m; T(n, 1) = n, for n >= 1, and T(n, m) = F(2*(m-1))*(n-m+1) for n >= m >= 2, with F = A000045 (Fibonacci).
G.f. column m: G(1, x) = x/(1-x)^2, G(m, x) = F(2*(m-1))*x^m/(1-x)^2, for m >= 2. (End)
With offset 0: g.f. of row polynomials R(n, x) := Sum_{m=0..n} t(n, m)*x^m, that is, g.f. of triangle t(n,m) = T(n+1, m+1):
G(z, x) = (1 - x*z)^2 / ((1 - z)^2*(1 - 3*x*z + (x*z)^2)). - Wolfdieter Lang, Apr 09 2021

A259714 a(n) = Sum_{k=1..n-1}((k mod 5)*a(n-k)), a(1) = 1.

Original entry on oeis.org

1, 1, 3, 8, 21, 50, 129, 327, 827, 2089, 5290, 13386, 33868, 85693, 216836, 548660, 1388269, 3512737, 8888292, 22490049, 56906580, 143990771, 364339983, 921889753, 2332658401, 5902327520, 14934664284, 37789193522, 95618028007, 241942376384
Offset: 1

Views

Author

Anders Hellström, Jul 03 2015

Keywords

Crossrefs

Cf. A088305 (sequence obtained without mod 5 in the formula).

Programs

  • Mathematica
    f[n_] := Block[{k, a = {1}}, Do[AppendTo[a, Sum[Mod[k, 5] a[[i - k]], {k, 1, i - 1}]], {i, 2, n}]; a]; f@ 30 (* Michael De Vlieger, Jul 03 2015 *)
  • PARI
    main(size)=my(v=vector(size),n,s); v[1]=1; for(n=2, size, for(s=1, n-1, v[n] = v[n] + (s%5)*v[n-s] )); v;

Formula

Conjectures from Colin Barker, Jul 04 2015: (Start)
a(n) = a(n-1)+2*a(n-2)+3*a(n-3)+4*a(n-4)+a(n-5) for n>6.
G.f.: x*(x-1)*(x^4+x^3+x^2+x+1) / ((x+1)*(x^4+3*x^3+2*x-1)).
(End)

A296106 Square array T(n,k) n >= 1, k >= 1 read by antidiagonals: T(n, k) is the number of distinct Bojagi boards with dimensions n X k that have a unique solution.

Original entry on oeis.org

1, 3, 3, 8, 17, 8, 21, 130, 130, 21, 55, 931, 2604, 931, 55, 144, 6871, 54732, 54732, 6871, 144, 377, 50778
Offset: 1

Views

Author

Taotao Liu, Dec 04 2017

Keywords

Comments

Bojagi is a puzzle game created by David Radcliffe.
A Bojagi board is a rectangular board with some cells empty and some cells containing positive integers. A solution for a Bojagi board partitions the board into rectangles such that each rectangle contains exactly one integer, and that integer is the area of the rectangle.

Examples

			Array begins:
======================================
n\k|   1    2     3     4    5   6
---+----------------------------------
1  |   1    3     8    21   55 144 ...
2  |   3   17   130   931 6871 ...
3  |   8  130  2604 54732 ...
4  |  21  931 54732 ...
5  |  55 6871 ...
6  | 144 ...
...
As a triangle:
    1;
    3,    3;
    8,   17,     8;
   21,  130,   130,    21;
   55,  931,  2604,   931,   55;
  144, 6871, 54732, 54732, 6871, 144;
  ...
If n=1 or k=1, any valid board (a board whose numbers add up to the area of the board) has a unique solution.
For n=2 and k=2, there are 17 boards that have a unique solution. There is 1 board in which each of the four cells has a 1.
There are 4 boards which contain two 2's. The 2's must be adjacent (not diagonally opposite) in order for the board to have a unique solution.
There are 8 boards which contain one 2 and two 1's. The 1's must be adjacent in order for the board to have a solution. The 2 can be placed in either of the remaining two cells.
There are 4 boards which contain one 4. It can be placed anywhere.
		

Crossrefs

Cf. A088305.

Formula

T(n,1) = A088305(n), the even-indexed Fibonacci numbers.
T(n,1) = Sum_{i=1..n} i*T(n-i,1) if we take T(0,1) = 1.

A320251 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{j>=1} j^k*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 8, 8, 1, 1, 9, 18, 21, 16, 1, 1, 17, 44, 63, 55, 32, 1, 1, 33, 114, 207, 221, 144, 64, 1, 1, 65, 308, 723, 991, 776, 377, 128, 1, 1, 129, 858, 2631, 4805, 4752, 2725, 987, 256, 1, 1, 257, 2444, 9843, 24655, 31880, 22769, 9569, 2584, 512
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 08 2018

Keywords

Comments

A(n,k) is the invert transform of k-th powers evaluated at n.

Examples

			G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k + 1) + 3^k + 1)*x^3 + (3*2^k + 2^(2*k + 1) + 2*3^k + 1)*x^4 + ...
Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   1,   1,    1,    1,     1,      1,  ...
   2,   3,    5,    9,    17,     33,  ...
   4,   8,   18,   44,   114,    308,  ...
   8,  21,   63,  207,   723,   2631,  ...
  16,  55,  221,  991,  4805,  24655,  ...
		

Crossrefs

Columns k=0..3 give A011782, A088305, A033453, A144109.
Main diagonal gives A301655.
Cf. A144048.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - Sum[i^k x^i, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - PolyLog[-k, x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 - PolyLog(-k,x)), where PolyLog() is the polylogarithm function.

A374925 Number of n-color compositions of n having at least one pair of adjacent parts that are the same color.

Original entry on oeis.org

0, 0, 1, 3, 10, 31, 91, 259, 726, 2007, 5489, 14888, 40122, 107574, 287239, 764405, 2028679, 5371858, 14198008, 37467982, 98749767, 259984452, 683865318, 1797500121, 4721662597, 12396308875, 32531025970, 85337831350, 223794544179, 586736215856, 1537941527011
Offset: 0

Views

Author

John Tyler Rascoe, Jul 24 2024

Keywords

Examples

			a(4) = 10 counts: (1,1,1,1), (1,1,2_a), (1,1,2_b), (1,2_a,1), (1,3_a), (2_a,1,1), (2_a,2_a), (2_b,1,1), (2_b,2_b), (3_a,1).
		

Crossrefs

Programs

  • PARI
    C_x(N) = {my(x='x+O('x^N), h=(sum(i=1,N,(x^(2*i))/((1-x)*(1-x+x^i)*(1-sum(j=1,N, (x^j)/(1-x+x^j))))))/(1-sum(i=1,N,(x^i)/(1-x)))); concat([0,0],Vec(h))}
    C_x(40)

Formula

G.f.: Sum_{i>0} ( x^(2*i)/((1 - x)*(1 - x + x^i)*(1 - Sum_{j>0} ((x^j)/(1 - x + x^j)))) )/( 1 - Sum_{k>0} ((x^k)/(1 - x)) ).
a(n) = A088305(n) - A242551(n).

A383275 Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 134, 454, 1634, 6245, 25321, 108779, 494443, 2374288, 12024257, 64100444, 358948674, 2106756217, 12931155910, 82823317389, 552400947902, 3829070637080, 27534807426150, 205066734143893, 1579309451332366, 12559941159979791, 103013928588389695
Offset: 0

Views

Author

John Tyler Rascoe, Apr 21 2025

Keywords

Comments

A record in a composition is a part that is greater than all parts before it, reading left to right. The first part of any nonempty composition is considered a record. A part 1 can be a record, iff it is the first part of a composition.

Examples

			a(3) = 5: (3), (1_a,2), (2,1_a), (2,1_b), (1_a,1_a,1_a).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1, add(
          b(n-j, max(j, m))*`if`(j=1, m, 1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..26);  # Alois P. Heinz, Apr 23 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(prod(i=1,N,1+x^i/(1-i*x+(-x^2+x^(i+1))/(1-x))))}
    A_x(30)

Formula

G.f.: Product_{i>0} 1 + x^i/(1 - i*x - (x^2 - x^(i+1))/(1-x)).
Previous Showing 31-40 of 46 results. Next