A372015
Product of Fibonacci and self-convolution of Fibonacci numbers: a(n) = A000045(n+1)*A001629(n+1).
Original entry on oeis.org
0, 1, 4, 15, 50, 160, 494, 1491, 4420, 12925, 37380, 107136, 304764, 861445, 2421700, 6775755, 18879734, 52413856, 145038890, 400183575, 1101277060, 3023462521, 8282790024, 22646131200, 61805595000, 168399404425, 458128878724, 1244567262471, 3376576740410, 9149594423200
Offset: 0
-
a := proc(n) option remember; if n < 3 then return n^2 fi;
-((2 - 2*n^2 + n)*a(n - 1) + (1 - 2*n^2 + 3*n)*a(n - 2) + n^2*a(n - 3))/(n - 1)^2 end: seq(a(n), n = 0..29); # Peter Luschny, Apr 16 2024
-
CoefficientList[Series[x(1-x)/((1+x)*(1-3*x+x^2)^2),{x,0,29}],x] (* Stefano Spezia, Apr 16 2024 *)
-
A_x(N)= {my(x='x+O('x^N)); concat([0],Vec(x*(1-x)/((1+x)*(1-3*x+x^2)^2)))}
A_x(40) \\ John Tyler Rascoe, Jul 29 2024
A383101
Number of compositions of n such that any part 1 can be m different colors where m is the largest part of the composition.
Original entry on oeis.org
1, 1, 2, 6, 21, 77, 294, 1178, 4978, 22191, 104146, 513385, 2653003, 14349804, 81125023, 478686413, 2943737942, 18838530436, 125268429098, 864256288435, 6177766228172, 45689641883377, 349173454108407, 2754058599745239, 22393206702946457, 187501022603071090
Offset: 0
a(3) = 6 counts: (3), (2,1_a), (2,1_b), (1_a,2), (1_b,2), (1_a,1_a,1_a).
-
b:= proc(n, p, m) option remember; binomial(n+p, n)*
m^n+add(b(n-j, p+1, max(m, j)), j=2..n)
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Apr 23 2025
-
A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(m=1,N, x^m/((1-m*x-(x^2-x^m)/(1-x))*(1-m*x-(x^2-x^(m+1))/(1-x)))))}
A_x(30)
A383175
Number of compositions of n such that any fixed point k can be k different colors.
Original entry on oeis.org
1, 1, 2, 5, 10, 22, 48, 101, 213, 450, 945, 1961, 4064, 8385, 17242, 35332, 72141, 146924, 298552, 605377, 1225277, 2475912, 4995754, 10067848, 20267680, 40762951, 81916919, 164504411, 330155437, 662265817, 1327860471, 2661376529, 5332341881, 10680912173
Offset: 0
a(3) = 5 counts: (3), (2,1), (1_a,2_a), (1_a,2_b), (1_a,1,1).
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(
`if`(n<=i+j, ceil(2^(n-j-1)), b(n-j, i+1))*
`if`(i=j, j, 1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..33); # Alois P. Heinz, Apr 18 2025
-
A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N, prod(j=1,i, j*x^j-x^j+x/(1-x))))}
A_x(30)
A141688
Triangle T(n, k) = Fibonacci(2*k)*T(n-1, k) + Fibonacci(2*(n-k+1))*T(n-1, k-1), with T(n, 1) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 26, 26, 1, 1, 99, 416, 99, 1, 1, 352, 5407, 5407, 352, 1, 1, 1200, 62616, 227094, 62616, 1200, 1, 1, 3977, 673728, 8212854, 8212854, 673728, 3977, 1, 1, 12918, 6889153, 269486766, 903413940, 269486766, 6889153, 12918, 1, 1, 41338, 67863290, 8256432767, 88493861004, 88493861004, 8256432767, 67863290, 41338, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 26, 26, 1;
1, 99, 416, 99, 1;
1, 352, 5407, 5407, 352, 1;
1, 1200, 62616, 227094, 62616, 1200, 1;
1, 3977, 673728, 8212854, 8212854, 673728, 3977, 1;
1, 12918, 6889153, 269486766, 903413940,269486766, 6889153, 12918, 1;
-
function T(n,k)
if k eq 1 or k eq n then return 1;
else return Fibonacci(2*(n-k+1))*T(n-1, k-1) + Fibonacci(2*k)*T(n-1, k);
end if; return T;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 29 2021
-
(* First program *)
b[n_]:= b[n]= If[n==0, 1, Sum[k*b[n-k], {k,n}]];
T[n_, k_]:= If[k==1 || k==n, 1, b[n-k+1]*T[n-1, k-1] + b[k]*T[n-1, k]];
Table[T[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 29 2021 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, Fibonacci[2*(n-k+1)]*T[n-1, k-1] + Fibonacci[2*k]*T[n-1, k]];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 29 2021 *)
-
@CachedFunction
def T(n,k): return 1 if (k==1 or k==n) else fibonacci(2*(n-k+1))*T(n-1, k-1) + fibonacci(2*k)*T(n-1, k)
flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 29 2021
A143929
Eigentriangle by rows, termwise products of the natural numbers decrescendo and the bisected Fibonacci series.
Original entry on oeis.org
1, 2, 1, 3, 2, 3, 4, 3, 6, 8, 5, 4, 9, 16, 21, 6, 5, 12, 24, 42, 55, 7, 6, 15, 32, 63, 110, 144, 8, 7, 18, 40, 84, 165, 288, 377, 9, 8, 21, 48, 105, 220, 432, 754, 987, 10, 9, 24, 56, 126, 275, 576, 1131, 1974, 2584
Offset: 1
First rows of the triangle T(n, m), n >= 1, m = 1..n:
1;
2, 1;
3, 2, 3;
4, 3, 6, 8;
5, 4, 9, 16, 21;
6, 5, 12, 24, 42, 55;
7, 6, 15, 32, 63, 110, 144;
8, 7, 18, 40, 84, 165, 288, 377;
9, 8, 21, 48, 105, 220, 432, 754, 987;
...
Example: row 4 = (4, 3, 6, 8) = termwise product of (4, 3, 2, 1) and (1, 1, 3, 8).
A259714
a(n) = Sum_{k=1..n-1}((k mod 5)*a(n-k)), a(1) = 1.
Original entry on oeis.org
1, 1, 3, 8, 21, 50, 129, 327, 827, 2089, 5290, 13386, 33868, 85693, 216836, 548660, 1388269, 3512737, 8888292, 22490049, 56906580, 143990771, 364339983, 921889753, 2332658401, 5902327520, 14934664284, 37789193522, 95618028007, 241942376384
Offset: 1
Cf.
A088305 (sequence obtained without mod 5 in the formula).
-
f[n_] := Block[{k, a = {1}}, Do[AppendTo[a, Sum[Mod[k, 5] a[[i - k]], {k, 1, i - 1}]], {i, 2, n}]; a]; f@ 30 (* Michael De Vlieger, Jul 03 2015 *)
-
main(size)=my(v=vector(size),n,s); v[1]=1; for(n=2, size, for(s=1, n-1, v[n] = v[n] + (s%5)*v[n-s] )); v;
A296106
Square array T(n,k) n >= 1, k >= 1 read by antidiagonals: T(n, k) is the number of distinct Bojagi boards with dimensions n X k that have a unique solution.
Original entry on oeis.org
1, 3, 3, 8, 17, 8, 21, 130, 130, 21, 55, 931, 2604, 931, 55, 144, 6871, 54732, 54732, 6871, 144, 377, 50778
Offset: 1
Array begins:
======================================
n\k| 1 2 3 4 5 6
---+----------------------------------
1 | 1 3 8 21 55 144 ...
2 | 3 17 130 931 6871 ...
3 | 8 130 2604 54732 ...
4 | 21 931 54732 ...
5 | 55 6871 ...
6 | 144 ...
...
As a triangle:
1;
3, 3;
8, 17, 8;
21, 130, 130, 21;
55, 931, 2604, 931, 55;
144, 6871, 54732, 54732, 6871, 144;
...
If n=1 or k=1, any valid board (a board whose numbers add up to the area of the board) has a unique solution.
For n=2 and k=2, there are 17 boards that have a unique solution. There is 1 board in which each of the four cells has a 1.
There are 4 boards which contain two 2's. The 2's must be adjacent (not diagonally opposite) in order for the board to have a unique solution.
There are 8 boards which contain one 2 and two 1's. The 1's must be adjacent in order for the board to have a solution. The 2 can be placed in either of the remaining two cells.
There are 4 boards which contain one 4. It can be placed anywhere.
A320251
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/(1 - Sum_{j>=1} j^k*x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 8, 8, 1, 1, 9, 18, 21, 16, 1, 1, 17, 44, 63, 55, 32, 1, 1, 33, 114, 207, 221, 144, 64, 1, 1, 65, 308, 723, 991, 776, 377, 128, 1, 1, 129, 858, 2631, 4805, 4752, 2725, 987, 256, 1, 1, 257, 2444, 9843, 24655, 31880, 22769, 9569, 2584, 512
Offset: 0
G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k + 1) + 3^k + 1)*x^3 + (3*2^k + 2^(2*k + 1) + 2*3^k + 1)*x^4 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, ...
4, 8, 18, 44, 114, 308, ...
8, 21, 63, 207, 723, 2631, ...
16, 55, 221, 991, 4805, 24655, ...
-
Table[Function[k, SeriesCoefficient[1/(1 - Sum[i^k x^i, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 - PolyLog[-k, x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A374925
Number of n-color compositions of n having at least one pair of adjacent parts that are the same color.
Original entry on oeis.org
0, 0, 1, 3, 10, 31, 91, 259, 726, 2007, 5489, 14888, 40122, 107574, 287239, 764405, 2028679, 5371858, 14198008, 37467982, 98749767, 259984452, 683865318, 1797500121, 4721662597, 12396308875, 32531025970, 85337831350, 223794544179, 586736215856, 1537941527011
Offset: 0
a(4) = 10 counts: (1,1,1,1), (1,1,2_a), (1,1,2_b), (1,2_a,1), (1,3_a), (2_a,1,1), (2_a,2_a), (2_b,1,1), (2_b,2_b), (3_a,1).
-
C_x(N) = {my(x='x+O('x^N), h=(sum(i=1,N,(x^(2*i))/((1-x)*(1-x+x^i)*(1-sum(j=1,N, (x^j)/(1-x+x^j))))))/(1-sum(i=1,N,(x^i)/(1-x)))); concat([0,0],Vec(h))}
C_x(40)
A383275
Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 134, 454, 1634, 6245, 25321, 108779, 494443, 2374288, 12024257, 64100444, 358948674, 2106756217, 12931155910, 82823317389, 552400947902, 3829070637080, 27534807426150, 205066734143893, 1579309451332366, 12559941159979791, 103013928588389695
Offset: 0
a(3) = 5: (3), (1_a,2), (2,1_a), (2,1_b), (1_a,1_a,1_a).
-
b:= proc(n, m) option remember; `if`(n=0, 1, add(
b(n-j, max(j, m))*`if`(j=1, m, 1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..26); # Alois P. Heinz, Apr 23 2025
-
A_x(N) = {my(x='x+O('x^N)); Vec(prod(i=1,N,1+x^i/(1-i*x+(-x^2+x^(i+1))/(1-x))))}
A_x(30)
Comments