cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A176015 Decimal expansion of (5 + 3*sqrt(5))/10.

Original entry on oeis.org

1, 1, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2, 4, 3, 2, 2, 5, 1, 3, 6, 3, 4, 6, 8, 2, 4, 9, 0, 8, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (5 + 3*sqrt(5))/10 is A010686.
The horizontal distance between the accumulation point and the outermost point of a golden spiral inscribed inside a golden rectangle with dimensions phi and 1 along the x and y axes, respectively (the vertical distance is A244847). - Amiram Eldar, May 18 2021

Examples

			(5 + 3*sqrt(5))/10 = 1.17082039324993690892...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.2 The Golden Mean, phi, p. 7.

Crossrefs

Cf. A000032, A000045, A001622, A002163 (decimal expansion of sqrt(5)), A010686 (repeat 1, 5), A090550, A134976.
Cf. A010499 (decimal expansion of 3*sqrt(5)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); n:=(5+3*Sqrt(5))/10; Reverse(Intseq(Floor(10^104*n))); // Arkadiusz Wesolowski, Jan 07 2018
    
  • Maple
    Digits := 1000:  (5+3*sqrt(5.0))/10; # Muniru A Asiru, Jan 22 2018
  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/10, 10, 1001][[1]] (* Georg Fischer, Apr 02 2020 *)
  • PARI
    (5 + 3*sqrt(5))/10 \\ Michel Marcus, Apr 20 2020

Formula

Equals (A134976 + 8)/10. - R. J. Mathar, Apr 12 2010
From Arkadiusz Wesolowski, Jan 07 2018: (Start)
Equals A001622^2 / sqrt(5).
Equals lim_{n -> infinity} A000045(n+2) / A001622^n. (End)
Equals 1/A090550 + 1. - Michel Marcus, Apr 20 2020
Minimal polynomial is 5x^2 - 5x - 1 (this number is an algebraic number but not an algebraic integer). - Alonso del Arte, Apr 20 2020
Equals lim_{k->oo} Fibonacci(k+2)/Lucas(k). - Amiram Eldar, Feb 06 2022

A377805 Decimal expansion of the volume of a snub dodecahedron with unit edge length.

Original entry on oeis.org

3, 7, 6, 1, 6, 6, 4, 9, 9, 6, 2, 7, 3, 3, 3, 6, 2, 9, 7, 5, 7, 7, 7, 6, 7, 3, 6, 7, 1, 3, 0, 2, 7, 1, 4, 3, 4, 0, 3, 5, 5, 2, 8, 9, 8, 7, 3, 4, 8, 8, 0, 9, 8, 9, 6, 0, 4, 9, 6, 8, 9, 7, 3, 0, 2, 9, 9, 3, 6, 2, 0, 0, 7, 5, 7, 8, 7, 6, 4, 1, 6, 7, 9, 4, 6, 0, 9, 2, 9, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 09 2024

Keywords

Examples

			37.616649962733362975777673671302714340355289873...
		

Crossrefs

Cf. A377804 (surface area), A377806 (circumradius), A377807 (midradius).
Cf. A102769 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[((3*GoldenRatio + 1)*#*(# + 1) - GoldenRatio/6 - 2)/Sqrt[3*#^2 - GoldenRatio^2], 10, 100]] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Volume"], 10, 100]]

Formula

Equals ((3*phi + 1)*xi*(xi + 1) - phi/6 - 2)/sqrt(3*xi^2 - phi^2) = (A090550*xi*(xi + 1) - A134946 - 2)/sqrt(3*xi^2 - A104457), where phi = A001622 and xi = A377849.
Equals the largest real root of 2176782336*x^12 - 3195335070720*x^10 + 162223191936000*x^8 + 1030526618040000*x^6 + 6152923794150000*x^4 - 182124351550575000*x^2 + 187445810737515625.

A134973 Decimal expansion of 3/phi = 6/(1 + sqrt(5)).

Original entry on oeis.org

1, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2, 1, 6, 1, 2, 5, 6, 8
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Examples

			1.8541019662496845446137605030969143531609275394172885864063458681157...
		

Crossrefs

Cf. A000032, A001622 (golden ratio), A090550 (5/x = x-5), A192222 (Fibonacci(2^n + 1)).

Programs

Formula

Equals A090550 - 4. - R. J. Mathar, Oct 27 2008
Equals Product_{n>=1} (1 + 1/A192222(n)). - Charles R Greathouse IV, Jun 26 2011
Equals 1 + Sum_{k>=0} (-1)^k * binomial(2*k,k)/((k+1)*5^k). - Amiram Eldar, Jun 06 2021
Equals Product_{k>=1} (Lucas(3*k)^2 + 5*(-1)^(k+1))/(Lucas(3*k)^2 + 5*(-1)^k) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022

A385445 Decimal expansion of (-1 + 3*phi)*sqrt(3 - phi), with the golden section phi = A001622.

Original entry on oeis.org

4, 5, 3, 0, 7, 6, 8, 5, 9, 3, 1, 8, 5, 9, 7, 5, 1, 7, 4, 3, 6, 1, 2, 2, 4, 0, 9, 0, 9, 9, 8, 1, 4, 7, 3, 2, 3, 2, 3, 8, 8, 8, 6, 9, 2, 9, 4, 6, 8, 2, 0, 9, 3, 5, 2, 5, 3, 9, 2, 8, 8, 9, 0, 5, 0, 6, 6, 3, 6, 2, 0, 7, 2, 1, 8, 6, 4, 5, 7, 0, 9, 5, 2, 9
Offset: 1

Views

Author

Wolfdieter Lang, Jul 01 2025

Keywords

Comments

This constant c gives the real part of -2*11*Z = (c + d*i), where Z is the (finite) fixed point of a complex function w (of the loxodromic type) mapping iteratively the vertices of golden triangles, starting with vertices (D_1, D_2, D_3), circumscribed by the unit circle with center at the origin, and D_1 = i, D_2 = (s - phi*i)/2 and D_3 = (-s - phi*i)/2. This function is w(z) = a*z + b, with a = (-1 + phi) * exp(-(3*Pi/5)*i) = -((2 - phi) + s*i)/2 and b = (1 - phi)*i, where s = sqrt(3 - phi) = A182007 (the length of the base (D_2, D_3) of the first triangle, also called s_1).
The imaginary part of -2*11*Z is d = -7 + 10*phi = A385446.
If the fixed point Z = -(0.20594... + 0.41728...*i) is chosen as origin then the loxodromic map is W(z') = a*z' (where z' = z - Z and W(z') = w(z'+Z) - Z).
For details see the linked paper, eqs.(5a,b) for w(z), eq.(6) for Z and eq.(7) for W(z'). (In eq.(5b) the i is missing in the exponent.) The nesting of golden triangles as shown in Fig. 1 of the link leads to the fixed point Z.
The vertices of the nested golden triangles can be connected by a spiral built of circular sections with angle 108 degrees, centered at vertices D_{n+3} and shrinking radii s_n =(- 1 + phi)^(n-1)*s. Note that the curvature of this spiral is not continuous.
The length(Z, D_n) =: rho_n of the spokes of the spiral is (-1 + phi)^(n-1)*rho_1, with sqrt(11)*rho_1 = sqrt(8 + 9*phi) = sqrt(5 + 7*phi)*s = A385447.
For the length ratio rho_1/s see A385448.
The logarithmic spiral connecting the vertices D_{n+1} is given in polar coordinates by rho(Phi) = rho_1 * exp((-(5/(3*Pi)) * log(phi)*Phi), with the vertices obtained in polar coordinates for Phi = Phi_n = (3*Pi/5)*n, namely rho(Phi_n) = rho_{n+1}, for n >= 0. For log(phi) see A002390. Note that the nonnegative x-axis is now along Z, D_1. The angle(Z, D1, D4) =: gamma is given by arctan((18 - 11*phi)/s) = arcsin(rho_4 / 2) = 0.169860704... or 9.7323... degrees. See Fig. 3 of the linked paper.

Examples

			4.5307685931859751743612240909981473232388869294682093...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[27 - 4*GoldenRatio], 10, 120][[1]] (* Amiram Eldar, Jul 02 2025 *)

Formula

Equals (-1 + 3*phi)*sqrt(3 - phi) = (A090550 - 2)*A182007.
Equals sqrt(27 - 4*phi).

A374883 Decimal expansion of phi*(2*phi + 1) (i.e., (7 + 3*sqrt(5))/2), where phi is the golden ratio.

Original entry on oeis.org

6, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2
Offset: 1

Views

Author

Marco Ripà, Jul 22 2024

Keywords

Comments

The author conjectures that this is the minimum volume of an axis-aligned bounding box which includes the shortest minimum-link circuit joining all the vertices of the cube {0,1}^3 (i.e., the closed polygonal chains consisting of exactly 6 edges visiting all the points of the set {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}).
In detail, such a circuit of 6 links is given by (1/2,1+phi,1/2)-((1-phi)/2,0,(1+phi)/2)-((phi+1)/2,0, (1-phi)/2)-(1/2,1+phi,1/2)-((phi+1)/2,0,(phi+1)/2)-((1-phi)/2,0,(1-phi)/2(1/2,1+phi,1/2), where phi := (1+sqrt(5))/2 (see A001622).
Then, phi*(2*phi + 1) = phi^2*(phi + 1) since phi - 1 = 1/phi.

Examples

			6.8541019662496845446137605030969...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.

Crossrefs

Programs

  • Mathematica
    RealDigits[3*GoldenRatio + 2, 10, 120][[1]] (* Amiram Eldar, Jul 23 2024 *)

Formula

Equals (7 + 3*sqrt(5))/2.
Equals phi^2*(phi + 1), where phi = (1 + sqrt(5))/2.
Equals A104457^2 = 2*A205769. - Hugo Pfoertner, Jul 22 2024
Equals A090550 + 1 = A134973 + 5. - Amiram Eldar, Jul 23 2024
Equals phi^4. - Stefano Spezia, May 28 2025

A176260 Periodic sequence: Repeat 5, 1.

Original entry on oeis.org

5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5
Offset: 0

Views

Author

Klaus Brockhaus, Apr 13 2010

Keywords

Comments

Interleaving of A010716 and A000012.
Also continued fraction expansion of (5+3*sqrt(5))/2.
Also decimal expansion of 17/33.
Essentially first differences of A047264.
Binomial transform of 5 followed by -A122803 without initial terms 1, -2.
Inverse binomial transform of 5 followed by A007283 without initial term 3.
Second inverse binomial transform of A168607 without initial term 3.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 3*x^3 + 6*x^4 + 6*x^5 + ... is the o.g.f. for A008805. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A010716 (all 5's sequence), A000012 (all 1's sequence), A090550 (decimal expansion of (5+3*sqrt(5))/2), A010686 (repeat 1, 5), A047264 (congruent to 0 or 5 mod 6), A122803 (powers of -2), A007283 (3*2^n), A168607 (3^n+2), A008805.

Programs

  • Magma
    &cat[ [5, 1]: n in [0..52] ];
    [ 3+2*(-1)^n: n in [0..104] ];

Formula

a(n) = 3+2*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 5, a(1) = 1.
a(n) = -a(n-1)+6 for n > 0; a(0) = 5.
a(n) = 5*((n+1) mod 2)+(n mod 2).
a(n) = A010686(n+1).
G.f.: (5+x)/(1-x^2).
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 5, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+2^(2-s)). (End)
E.g.f.: 5*cosh(x) + sinh(x). - Stefano Spezia, Feb 09 2025

A344363 Decimal expansion of (5^(1/4) + 5^(3/4))/2.

Original entry on oeis.org

2, 4, 1, 9, 5, 2, 5, 1, 5, 3, 0, 5, 1, 6, 6, 5, 3, 3, 0, 9, 6, 4, 0, 3, 2, 1, 8, 0, 2, 1, 7, 0, 7, 6, 5, 3, 8, 6, 5, 1, 8, 1, 7, 8, 5, 7, 9, 3, 8, 5, 4, 7, 0, 8, 4, 6, 8, 3, 2, 5, 5, 3, 8, 2, 8, 9, 5, 8, 8, 4, 0, 4, 2, 5, 3, 9, 8, 9, 9, 6, 8, 5, 7, 3, 5, 8, 0, 1, 5, 5, 0, 8, 2, 4, 1, 8, 4, 6, 7, 8, 4, 8, 7, 3, 8
Offset: 1

Views

Author

Daniel Carter, May 15 2021

Keywords

Comments

Solution for z in the system {x = 1/y + 1/z, y = x + 1/z, z = y + 1/x}. The corresponding values of x and y are (5^(1/4) + 5^(-1/4))/2 and 5^(1/4).
The largest aspect ratio of a set of three rectangles which have the property that any two of them can be scaled, rotated, and joined at an edge to obtain a rectangle with the third aspect ratio. The other two aspect ratios are given in the comment above.

Examples

			2.419525153051665330964032180217076538651...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Surd[5,4]+Surd[5^3,4])/2,10,120][[1]] (* Harvey P. Dale, Jan 01 2023 *)
  • PARI
    my(c=250+150*quadgen(20)); a_vector(len) = digits(sqrtint(floor(c*100^(len-2)))); \\ Kevin Ryde, May 28 2021

Formula

Equals sqrt(A090550).
Equals Gamma(1/20)*Gamma(9/20)/(Gamma(3/20)*Gamma(7/20)). [Zucker] - R. J. Mathar, Jun 24 2024

A370175 a(n) = floor(x*a(n-1)) for n > 0 where x = (5+3*sqrt(5))/2, a(0) = 1.

Original entry on oeis.org

1, 5, 29, 169, 989, 5789, 33889, 198389, 1161389, 6798889, 39801389, 233001389, 1364013889, 7985076389, 46745451389, 273652638889, 1601990451389, 9378215451389, 54901029513889, 321396224826389, 1881486271701389, 11014412482638889, 64479493771701389
Offset: 0

Views

Author

Philippe Deléham, Mar 18 2024

Keywords

Comments

x = A090550 = 1 + 3*phi = 5.854101966..., where phi is the golden ratio.

Examples

			a(0) = 1, a(1) = floor(x) = 5 where x = (5+3*sqrt(5))/2.
a(2) = floor(5*x) = 29, a(3) = floor(29*x) = 169.
		

Crossrefs

Programs

  • Mathematica
    NestList[Floor[#*(5 + 3*Sqrt[5])/2] &, 1, 30] (* or *)
    LinearRecurrence[{6, 0, -5}, {1, 5, 29}, 30] (* Paolo Xausa, May 25 2024 *)

Formula

a(n) = 6*a(n-1) - 5*a(n-3), a(0) = 1, a(1) = 5, a(2) = 29.
a(n) = 5*a(n-1) + 5*a(n-2) - 1.
a(n) = (4*(5-2*sqrt(5))*((5-3*sqrt(5))/2)^n + 4*(5+2*sqrt(5))*((5+3*sqrt(5))/2)^n + 5)/45.
G.f.: (1 - x - x^2)/(1 - 6*x + 5*x^3).
a(n) = Sum_{k = 0..n} A370174(n,k)*4^k.
a(n) = (8*A057088(n) + 4*A057088(n-1) + 1)/9.
Previous Showing 11-18 of 18 results.